by the maximum pilot force specified in §27.397(a);
(2) Attain a resulting sideslip angle or 15°, whichever is less, at the lesser speed of V_{NE} or V_{H};
(3) Vary the sideslip angles of paragraphs (b)(2) and (c)(2) of this section directly with speed; and
(4) Return the directional control suddenly to neutral.

§ 27.361 Engine torque.

(a) For turbine engines, the limit torque may not be less than the highest of—
(1) The mean torque for maximum continuous power multiplied by 1.25;
(2) The torque required by §27.923;
(3) The torque required by §27.927; or
(4) The torque imposed by sudden engine stoppage due to malfunction or structural failure (such as compressor jamming).

(b) For reciprocating engines, the limit torque may not be less than the mean torque for maximum continuous power multiplied by—
(1) 1.33, for engines with five or more cylinders; and
(2) Two, three, and four, for engines with four, three, and two cylinders, respectively.

CONTROL SURFACE AND SYSTEM LOADS

§ 27.391 General.

Each auxiliary rotor, each fixed or movable stabilizing or control surface, and each system operating any flight control must meet the requirements of §§27.395, 27.397, 27.399, 27.411, and 27.427.

§ 27.395 Control system.

(a) The part of each control system from the pilot’s controls to the control stops must be designed to withstand pilot forces of not less than—
(1) The forces specified in §27.397; or
(2) If the system prevents the pilot from applying the limit pilot forces to the system, the maximum forces that the system allows the pilot to apply, but not less than 0.60 times the forces specified in §27.397.

(b) Each primary control system, including its supporting structure, must be designed as follows:
(1) The system must withstand loads resulting from the limit pilot forces prescribed in §27.397.
(2) Notwithstanding paragraph (b)(3) of this section, when power-operated actuator controls or power boost controls are used, the system must also withstand the loads resulting from the force output of each normally energized power device, including any single power boost or actuator system failure.

(3) If the system design or the normal operating loads are such that a part of the system cannot react to the limit pilot forces prescribed in §27.397, that part of the system must be designed to withstand the maximum loads that can be obtained in normal operation. The minimum design loads must, in any case, provide a rugged system for service use, including consideration of fatigue, jamming, ground gusts, control inertia, and friction loads. In the absence of rational analysis, the design loads resulting from 0.60 of the specified limit pilot forces are acceptable minimum design loads.

(4) If operational loads may be exceeded through jamming, ground gusts, control inertia, or friction, the system must withstand the limit pilot forces specified in §27.397, without yielding.

[Doc. No. 5074, 29 FR 15695, Nov. 24, 1964, as amended by Amdt. 27–26, 55 FR 7999, Mar. 6, 1990]

§ 27.397 Limit pilot forces and torques.

(a) Except as provided in paragraph (b) of this section, the limit pilot forces are as follows:
(1) For foot controls, 130 pounds.
(2) For stick controls, 100 pounds fore and aft, and 67 pounds laterally.

(b) For flap, tab, stabilizer, rotor brake, and landing gear operating controls, the follows apply (R=radius in inches):
(1) Crank, wheel, and lever controls, $\frac{1+R}{3} \times 50$ pounds, but not less than 50 pounds nor more than 100 pounds for hand operated controls or 130 pounds for foot operated controls, applied at