§ 25.333

§ 25.333(b)) and the cockpit pitch control is suddenly moved to obtain extreme nose up pitching acceleration. In defining the tail load, the response of the airplane must be taken into account. Airplane loads that occur subsequent to the time when normal acceleration at the c.g. exceeds the positive limit maneuvering load factor (at point A_2 in §25.333(b)), or the resulting tailplane normal load reaches its maximum, whichever occurs first, need not be considered.

(2) Specified control displacement. A checked maneuver, based on a rational pitching control motion vs. time profile, must be established in which the design limit load factor specified in §25.337 will not be exceeded. Unless lesser values cannot be exceeded, the airplane response must result in pitching accelerations not less than the following:

(i) A positive pitching acceleration (nose up) is assumed to be reached concurrently with the airplane load factor of 1.0 (Points A_1 to D_1, §25.333(b)). The positive acceleration must be equal to at least

$$\frac{39n}{v} (n - 1.5), \text{ (Radians/sec}^2)$$

where—

n is the positive load factor at the speed under consideration, and V is the airplane equivalent speed in knots.

(ii) A negative pitching acceleration (nose down) is assumed to be reached concurrently with the positive maneuvering load factor (points A_2 to D_2, §25.333(b)). This negative pitching acceleration must be equal to at least

$$\frac{-26n}{v} (n - 1.5), \text{ (Radians/sec}^2)$$

where—

n is the positive load factor at the speed under consideration, and V is the airplane equivalent speed in knots.
§ 25.335 Design airspeeds.

The selected design airspeeds are equivalent airspeeds (EAS). Estimated values of V_{S0} and V_{S1} must be conservative.

(a) Design cruising speed, V_C. For V_C, the following apply:

1. The minimum value of V_C must be sufficiently greater than V_B to provide for inadvertent speed increases likely to occur as a result of severe atmospheric turbulence.

2. Except as provided in §25.335(d)(2), V_C may not be less than $V_B + 1.32 U_{REF}$ (with U_{REF} as specified in §25.341(a)(5)(i)). However V_C need not exceed the maximum speed in level flight at maximum continuous power for the corresponding altitude.

3. At altitudes where V_D is limited by Mach number, V_C may be limited to a selected Mach number.

(b) Design dive speed, V_D. V_D must be selected so that V_C/M_C is not greater than $0.8 V_D/M_D$ or so that the minimum speed margin between V_C/M_C and V_D/M_D is the greater of the following values:

1. From an initial condition of stabilized flight at V_C/M_C, the airplane is upset, flown for 20 seconds along a flight path 7.5° below the initial path, and then pulled up at a load factor of 1.5g (0.5g acceleration increment). The speed increase occurring in this maneuver may be calculated if reliable or conservative aerodynamic data is used. Power as specified in §25.175(b)(1)(iv) is assumed until the pullup is initiated, at which time power reduction and the use of pilot controlled drag devices may be assumed.

2. The minimum speed margin must be enough to provide for atmospheric variations (such as horizontal gusts, and penetration of jet streams and cold fronts) and for instrument errors and airframe production variations. These factors may be considered on a probability basis. The margin at altitude where M_C is limited by compressibility effects must not less than 0.07M unless a lower margin is determined using a rational analysis that includes the effects of any automatic systems. In any