(viii) The modular transmitter must comply with any applicable RF exposure requirements in its final configuration.

(2) Split modular transmitters must meet the requirements in paragraph (a)(1) of this section, excluding paragraphs (a)(1)(i) and (a)(1)(v), and the following additional requirements to obtain a modular transmitter approval.

(i) Only the radio front end must be shielded. The physical crystal and tuning capacitors may be located external to the shielded radio elements. The interface between the split sections of the modular system must be digital with a minimum signaling amplitude of 150 mV peak-to-peak.

(ii) Control information and other data may be exchanged between the transmitter control elements and radio front end.

(iii) The sections of a split modular transmitter must be tested installed in a host device(s) similar to that which is representative of the platform(s) intended for use.

(iv) Manufacturers must ensure that only transmitter control elements and radio front end components that have been approved together are capable of operating together. The transmitter module must not operate unless it has verified that the installed transmitter control elements and radio front end have been authorized together. Manufacturers may use means including, but not limited to, coding in hardware and electronic signatures in software to meet these requirements, and must describe the methods in their application for equipment authorization.

(b) A limited modular approval may be granted for single or split modular transmitters that do not comply with all of the above requirements. e.g., shielding, minimum signaling amplitude, buffered modulation/data inputs, or power supply regulation, if the manufacturer can demonstrate by alternative means in the application for equipment authorization that the modular transmitter meets all the applicable part 15 requirements under the operating conditions in which the transmitter will be used. Limited modular approval also may be granted in those instances where compliance with RF exposure rules is demonstrated only for particular product configurations. The applicant for certification must state how control of the end product into which the module will be installed will be maintained such that full compliance of the end product is always ensured.

[72 FR 28893, May 23, 2007]

§ 15.213 Cable locating equipment.

An intentional radiator used as cable locating equipment, as defined in §15.3(d), may be operated on any frequency within the band 9–490 kHz, subject to the following limits: Within the frequency band 9 kHz, up to, but not including, 45 kHz, the peak output power from the cable locating equipment shall not exceed 10 watts; and, within the frequency band 45 kHz to 490 kHz, the peak output power from the cable locating equipment shall not exceed one watt. If provisions are made for connection of the cable locating equipment to the AC power lines, the conducted limits in §15.207 also apply to this equipment.

§ 15.214 Cordless telephones.

(a) For equipment authorization, a single application form, FCC Form 731, may be filed for a cordless telephone system, provided the application clearly identifies and provides data for all parts of the system to show compliance with the applicable technical requirements. When a single application form is submitted, both the base station and the portable handset must carry the same FCC identifier. The application shall include a fee for certification of each type of transmitter and for certification, if appropriate, for each type of receiver included in the system.

(b) A cordless telephone that is intended to be connected to the public switched telephone network shall also comply with the applicable regulations in part 68 of this chapter. A separate procedure for approval under part 68 is required for such terminal equipment.

(c) The label required under subpart A of this part shall also contain the following statement: “Privacy of communications may not be ensured when using this phone.”

(d) Cordless telephones shall incorporate circuitry which makes use of a