§ 160.170–1

(b) Unless determined by the Commandant to be unnecessary, a prototype rescue boat with each change described in paragraph (a) of this section must be made and tested according to the procedures for new approvals in §§160.156–9 through 160.156–13 of this subpart.

(c) Determinations of equivalence of design, construction, and materials will be made by the Commandant only.

Subpart 160.170—Davit-Launched Liferaft Automatic Release Hooks (SOLAS)


§ 160.170–1 Scope.

This subpart prescribes standards, tests, and procedures for seeking Coast Guard approval of an automatic release mechanism complying with SOLAS and the IMO LSA Code, for use with davit-launched liferafts approved under subparts 160.051 or 160.151 of this part, and single-fall rescue boats approved under subpart 160.156 of this part.

§ 160.170–3 Definitions.

In addition to the definitions in the IMO LSA Code (incorporated by reference, see §160.170–5 of this subpart), in this subpart, the term:


Full load means the weight of the complete rescue boat including all required equipment, provisions, fuel (if applicable), and the number of persons for which it is approved. This is also known as the “condition B” weight.

Independent laboratory has the same meaning as 46 CFR 159.001–3. A list of accepted independent laboratories is available from the Commandant and online at http://cgmix.uscg.mil.

Light load means the weight of the complete rescue boat empty and does not include fuel, required equipment, or the equivalent weight of persons. This is also known as the “condition A” weight.

Officer in Charge, Marine Inspection (OCMI) means an officer of the Coast Guard designated as such by the Commandant and who fulfills the duties described in 46 CFR 1.01–15(b). The “cognizant OCMI” is the OCMI who has immediate jurisdiction over a vessel or geographic area for the purpose of performing the duties previously described.

SOLAS means the International Convention for the Safety of Life at Sea, 1974, as amended.


§ 160.170–5 Incorporation by reference.

(a) Certain material is incorporated by reference into this part with the approval of the Director of the Federal Register under 5 U.S.C. 552(a) and 1 CFR part 51. To enforce any edition other than that specified in this section, the Coast Guard must publish notice of change in the FEDERAL REGISTER and the material must be available to the public. All approved material is available for inspection at Coast Guard Headquarters. Contact Commandant (CG–ENG–4), Attn: Lifesaving and Fire Safety Division, U.S. Coast Guard Stop 7509, 2703 Martin Luther King Jr. Avenue SE., Washington, DC 20593–7509. You may also inspect this material at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202–741–6030 or go to http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. You may obtain copies of the material from the sources specified in the following paragraphs.

(b) American Society for Testing and Materials (ASTM), 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428–2959.


(2) ASTM A 276–08a, Standard Specification for Stainless Steel Bars and
§ 160.170-7 Design, construction, and performance of automatic release mechanisms.

(a) To seek Coast Guard approval of a release mechanism, a manufacturer must comply with, and each release mechanism must meet, the requirements of the following—

(1) IMO LSA Code, Chapter VI/6.1.5 (incorporated by reference, see §160.170-5 of this subpart);

(2) IMO Revised recommendation on testing Part I/8.2 (incorporated by reference, see §160.170-5 of this subpart).

(b) Each release mechanism must meet the following requirements—

(1) Design. All functions of the release mechanism, including removal of interlocks, operation of the release handle, resetting the hooks, and reattaching the falls to the hooks, must be designed to be operable by persons wearing immersion suits;

(2) Each release mechanism should be designed following standard human engineering practices described in ASTM F 1166 (incorporated by reference, see §160.170-5 of this subpart). Design limits should be based on a range from the fifth percentile female to the ninety-fifth percentile male values for critical body dimensions and functional capabilities as described in ASTM F 1166. The dimensions for a person wearing an immersion suit correspond to the arctic-clothed dimensions of ASTM F 1166;

(3) Steel. Each major structural component of each release mechanism must be constructed of steel. Other materials may be used if accepted by the Commandant as equivalent or superior. Sheet steel and plate must be low-carbon, commercial quality, either corrosion resistant or galvanized as per ASTM A 653 (incorporated by reference, see §160.170-5 of this subpart), coating designation G115. Structural steel plates and shapes must be carbon steel as per ASTM A 36 (incorporated by reference, see §160.170-5 of this subpart). All steel products, except corrosion resistant or galvanized as per ASTM A 653 (incorporated by reference, see §160.170-5 of this subpart), must be galvanized to provide high-quality zinc coatings suitable for the intended service life in a marine environment. Each fabricated part must be galvanized after fabrication. Corrosion resistant steel must be