§ 108.439 Quantity of CO₂ for protection of spaces.

(a) The number of pounds of CO₂ required to protect a space must be equal to the gross volume of the space divided by the appropriate factor from Table 108.439.

(b) If a machinery space includes a casing, the gross volume of the space may be calculated using the reductions allowed in 46 CFR 95.10–5(e).

(c) If fuel can drain from a space to an adjacent space or if two spaces are not entirely separate, the requirements for both spaces must be used to determine the amount of CO₂ to be provided and the CO₂ system must be arranged to discharge into both spaces simultaneously.

TABLE 108.439—CO₂ Supply Factors

<table>
<thead>
<tr>
<th>Gross volume of space in cubic feet</th>
<th>Over</th>
<th>Not over</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>500</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>1,600</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1,600</td>
<td>4,500</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>4,500</td>
<td>50,000</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>50,000</td>
<td></td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

§ 108.441 Piping and discharge rates for CO₂ systems.

(a) The size of branch lines to spaces protected by a CO₂ system must meet Table 108.441.

(b) Distribution piping within a space must be proportioned from the supply line to give proper distribution to the outlets without throttling.

(c) The number, type, and location of discharge outlets must distribute the CO₂ uniformly throughout the space.

TABLE 108.441—CO₂ System Pipe Size

<table>
<thead>
<tr>
<th>CO₂ supply in system, kilograms (pounds)</th>
<th>Minimum pipe size (inches), millimeters (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 (100)</td>
<td>12.7 (¹/₂₅₆).</td>
</tr>
<tr>
<td>104 (225)</td>
<td>19.05 (¾).</td>
</tr>
<tr>
<td>136 (300)</td>
<td>25.4 (1).</td>
</tr>
<tr>
<td>272 (600)</td>
<td>31.75 (1¼).</td>
</tr>
<tr>
<td>450 (1,000)</td>
<td>38.10 (1½).</td>
</tr>
</tbody>
</table>

(d) The total area of all discharge outlets must be more than 35 percent and less than 85 percent of the nominal cylinder outlet area or the area of the supply pipe, whichever is smaller. The nominal cylinder outlet area in square centimeters is determined by multiplying the factor 0.0313 by the number of kilograms of CO₂ required. (The nominal cylinder outlet area in square inches is determined by multiplying the factor 0.0022 by the number of pounds of CO₂ required). The nominal cylinder outlet area must not be less than 71 square millimeters (0.110 square inches).

(e) A CO₂ system must discharge at least 85 percent of the required amount within 2 minutes.

§ 108.443 Controls and valves.

(a) At least one control for operating a CO₂ system must be outside the space or spaces that the system protects and in a location that would be accessible if a fire occurred in any space that the system protects. Control valves must not be located in a protected space unless the CO₂ cylinders are also in the protected space.

(b) A CO₂ system that protects more than one space must have a manifold with a stop valve, the normal position of which is closed, that directs the flow of CO₂ to each protected space.

(c) A CO₂ system that protects only one space must have a stop valve installed between the cylinders and the discharge outlets in the system, except on a system that has a CO₂ supply of 136 kilograms (300 pounds) or less.

(d) At least one of the control stations in a CO₂ system that protects a machinery space must be as near as practicable to one of the main escapes from that space.

(e) All distribution valves and controls must be of an approved type.
§ 108.444 Lockout valves.

(a) A lockout valve must be provided on any carbon dioxide extinguishing system protecting a space over 6,000 cubic feet in volume and installed or altered after July 9, 2013. “Altered” means modified or refurbished beyond the maintenance required by the manufacturer’s design, installation, operation and maintenance manual.

(b) The lockout valve must be a manually operated valve located in the discharge manifold prior to the stop valve or selector valves. When in the closed position, the lockout valve must provide complete isolation of the system from the protected space or spaces, making it impossible for carbon dioxide to discharge in the event of equipment failure during maintenance.

(c) The lockout valve design or locking mechanism must make it obvious whether the valve is open or closed.

(d) A valve is considered a lockout valve if it has a hasp or other means of attachment to which, or through which, a lock can be affixed, or if it has a locking mechanism built into it.

(e) The master or person-in-charge must ensure that the valve is locked open at all times, except while maintenance is being performed on the extinguishing system, when the valve must be locked in the closed position.

(f) Lockout valves added to existing systems must be approved by the Commandant as part of the installed system.


§ 108.445 Alarm and means of escape.

(a) Each CO₂ system that has a supply of more than 136 kilograms (300 pounds) of CO₂, except a system that protects a tank, must have an alarm that sounds for at least 20 seconds before the CO₂ is released into the space.

(b) Each audible alarm for a CO₂ system must have the CO₂ supply for the system as its source of power and must be in a visible location in the spaces protected.

§ 108.446 Odorizing units.

Each carbon dioxide extinguishing system installed or altered after July 9, 2013, must have an approved odorizing unit to produce the scent of wintergreen, the detection of which will serve as an indication that carbon dioxide gas is present in a protected area and any other area into which the carbon dioxide may migrate. “Altered” means modified or refurbished beyond the maintenance required by the manufacturer’s design, installation, operation and maintenance manual.


§ 108.447 Piping.

(a) Each pipe, valve, and fitting in a CO₂ system must have a bursting pressure of at least 420 kilograms per square centimeter (6,000 pounds per square inch).

(b) All piping for a CO₂ system of nominal size of 19.05 millimeters (¾ inch) inside diameter or less must be at least Schedule 40 (standard weight) and all piping of nominal size over 19.05 millimeters (¾ inch) inside diameter must be at least Schedule 80 (extra heavy).

(c) Each pipe, valve, and fitting made of ferrous materials in a CO₂ system