§ 38.05–2
Design and construction of cargo tanks—general—TB/ALL.

(a) The maximum allowable temperature of the cargo is defined as the boiling temperature of the liquid at a pressure equal to the setting of the relief valve.

(b) The service temperature is the minimum temperature at which cargo is loaded and/or transported in the cargo tank. However, the service temperature shall in no case be taken higher than given by the following formula:

\[t_s = t_w - 0.25(t_b - t_s) \]

where:
- \(t_s \) = Service temperature.
- \(t_w \) = Boiling temperature of gas at normal working pressure of tank but not higher than +32 °F.
- \(t_b \) = Boiling temperature of gas at atmospheric pressure.

(c) Cargo tanks in vessels in ocean; Great Lakes; lakes, bays, and sounds; or coastwise service shall be designed to withstand, simultaneously, the following dynamic loadings:

1. Rolling 30° each side (120°) in 10 seconds.
2. Pitching 6° half amplitude (24°) in 7 seconds.
3. Heaving \(L/80 \) half amplitude (\(L/20 \)) in 8 seconds.

(d) Cargo tanks on barges shall be designed in accordance with §32.63–25 of this subchapter.

(e) Each liquefied flammable gas tank shall be provided with not less than a 15-inch by 23-inch or an 18-inch nominal diameter manhole fitted with a cover located above the maximum liquid level and as close to the top of the tank as possible. Where access trunks are fitted to the tanks, the nominal diameter of the trunks shall be not less than 30 inches.

(g) Cargo tanks vented above 10 pounds per square inch gage shall be of the pressure vessel type.

§ 38.05–3
Design and construction of pressure vessel type cargo tanks—TB/ALL.

(a) Cargo tanks of pressure vessel configuration (e.g., cylindrical, spherical, etc.) shall be designed, fabricated, inspected, and tested in accordance with the applicable requirements of part 54 of subchapter F (Marine Engineering) of this chapter, except as otherwise provided for in this part.

(b) The requirements of this section anticipate that cargo tanks constructed as pressure vessels will, by themselves, constitute the cargo containment system and usually will not require a secondary barrier.

(c) In the design of the tank, consideration shall be given to the possibility of the tank being subjected to external loads. Consideration shall also be given to excessive loads that can be imposed on the tanks by their support due to static and dynamic forces under operating conditions or during testing. The