§ 414.62 Effluent characteristics

<table>
<thead>
<tr>
<th>Effluent characteristics</th>
<th>BPT Effluent limitations 1</th>
<th>NSPS 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum for any one day</td>
<td>Maximum for monthly average</td>
</tr>
<tr>
<td>BOD5</td>
<td>80</td>
<td>30</td>
</tr>
<tr>
<td>TSS</td>
<td>149</td>
<td>46</td>
</tr>
<tr>
<td>pH</td>
<td>(2)</td>
<td>(2)</td>
</tr>
</tbody>
</table>

1 All units except pH are milligrams per liter.
2 Within the range of 6.0 to 9.0 at all times.

§ 414.63 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable (BAT).

(a) The Agency has determined that for existing point sources whose total OCPFSF production defined by § 414.11 is less than or equal to five (5) million pounds of OCPFSF products per year, the BPT level of treatment is the best available technology economically achievable. Accordingly, the Agency is not promulgating more stringent BAT limitations for these point sources.

(b) Except as provided in paragraph (a) of this section and in 40 CFR 125.30 through 125.32, any existing point source that uses end-of-pipe biological treatment and is subject to this subpart must achieve discharges in accordance with § 414.91 of this part.

(c) Except as provided in paragraph (a) of this section and in 40 CFR 125.30 through 125.32, any existing point source that does not use end-of-pipe biological treatment and is subject to this subpart must achieve discharges in accordance with § 414.101 of this part.

§ 414.64 New source performance standards (NSPS).

(a) Any new source that uses end-of-pipe biological treatment and is subject to this subpart must achieve discharges in accordance with § 414.91 of this part, and also must not exceed the quantity (mass) determined by multiplying the process wastewater flow subject to this subpart times the concentrations in the following table.

(b) Any new source that does not use end-of-pipe biological treatment and is subject to this subpart must achieve discharges in accordance with § 414.101 of this part, and also must not exceed the quantity (mass) determined by multiplying the process wastewater flow subject to this subpart times the concentrations in the following table.

§ 414.65 Pretreatment standards for existing sources (PSES).

Except as provided in 40 CFR 403.7 and 403.13, any existing source subject to this subpart which introduces pollutants into a publicly owned treatment works must comply with 40 CFR part 403 and achieve discharges in accordance with § 414.111.

§ 414.66 Pretreatment standards for new sources (PSNS).

Except as provided in 40 CFR 403.7 any new source subject to this subpart which introduces pollutants into a publicly owned treatment works must comply with 40 CFR part 403 and achieve discharges in accordance with § 414.111.

Subpart G—Bulk Organic Chemicals

§ 414.70 Applicability; description of the bulk organic chemicals subcategory.

The provisions of this subpart are applicable to the process wastewater discharges resulting from the manufacture of the following SIC 2865 and 2869...
Environmental Protection Agency § 414.70

bulk organic chemicals and bulk organic chemical groups. Product groups are indicated with an asterisk (*).

(a) Aliphatic Organic Chemicals

*Acetic Acid Esters
*Acetic Acid Salts
Acetone Cyanohydrin
Acetylene
Acrylic Acid
*Acrylic Acid Esters
*Alkoxy Alkanols
*Alkylates
*Alpha-Olefins
Butane (all forms)
*C-4 Hydrocarbons (Unsaturated)
Calcium Stearate
Caprolactam
Carboxymethyl Cellulose
Cellulose Acetate Butyrates
*Cellulose Ethers
Cumene Hydroperoxide
Cyclohexanol
Cyclohexanol, Cyclohexanone (Mixed)
Cyclohexanone
Cyclohexene
*C12-C18 Primary Alcohols
*C9 Concentrates
Decanol
Diacetone Alcohol
*Dicarboxylic Acids—Salts
Diethyl Ether
Diethylene Glycol
Diethylene Glycol Diethyl Ether
Diethylene Glycol Dimethyl Ether
Diethylene Glycol Monoethyl Ether
Diethylene Glycol Monomethyl Ether
*Ethoxylates, Misc.
Dioxane
Ethane
Ethylene Glycol Monophenyl Ether
*Ethoxylates, Misc.
Ethylene Glycol Dimethyl Ether
Ethylene Glycol Monobutyl Ether
Ethylene Glycol Monoethyl Ether
Ethylene Glycol Monomethyl Ether
Glycine (Synthetic)
Glyoxal
Hexane
*Hexanes and Other C6 Hydrocarbons
Isobutanol
Isobutylene
Isobutyaldehyde
Isophorone
Isophthalic Acid
Isoprene
Isopropyl Acetate
Ligninulfonic Acid, Calcium Salt
Maleic Anhydride
Methacrylic Acid
*Methacrylic Acid Esters
Methane
Methyl Ethyl Ketone
Methyl Methacrylate
Methyl Tert-Butyl Ether
Methylisobutyl Ketone

(b) Amine and Amide Organic Chemicals

*2,4-Diaminotoluene
*Alkyl Amines
Aniline
Caprolactam, Aqueous Concentrate
Diethanolamine
Diphenylamine
*Ethanolamines
Ethylamine
Ethyleneimine
Ethyleneiminetetraacetic Acid
*Fatty Amines
Hexamethylene Diamine
Isopropylamine
m-Toluidine
Melamine
Melamine Crystal
*Methyamines
Methylene Dianiline
n-Butylamine
N,N-Diethylaniline
N,N-Dimethylformamide
*Nitroanilines
Polymeric Methylene Dianiline
Sec-Butylamine
Tert-Butylamine
Toluenediamine (Mixture)
§ 414.71

* Toluidines
 o-Phenylenediamine
 2,6-Dimethylaniline
 4-(N-Hydroxyethylhexylamino)-2-Hydroxy-ethyl Aniline
 4,4′-Methylenebis (N,N′-dimethyl)-aniline
 4,4′-Methyleneedianiline

(c) Aromatic Organic Chemicals

Alpha-Methylstyrene
 *Alkyl Benzenes
 *Alkyl Phenols
 *Alkylbenzene Sulfonic Acids, Salts
 Aminobenzoic Acid (Meta and Para)
 Beta-Naphthalene Sulfonic Acid
 Benzenedisulfonic Acid
 Benzoic Acid
 Bis(2-Ethylhexyl)Phthalate
 Biphenol A
 BTX-Benzene, Toluene, Xylene (Mixed)
 Butyl Octyl Phthalate
 Coal Tar
 *Coal Tar Products (Misc.)
 Creosote
 *Cresols, Mixed
 Cyanuric Acid
 *Cyclic Aromatic Sulfonates
 Dibutyl Phthalate
 Diisobutyl Phthalate
 Diisodecyl Phthalate
 Diisooctyl Phthalate
 Diisocyl Phthalate
 Dimethyl Phthalate
 Dinitrotoilene (Mixed)
 Ditridecyl Phthalate
 m-Cresol
 Metanilic Acid
 Methyleneedianiline
 *Naphthas, Solvent
 Nitrobenzene
 Nitrotoilene
 Nonylphenol
 p-Cresol
 Phthalic Acid
 Phthalic Anhydride
 *Tars—Pitches
 Tert-Butylphenol
 *Toluene Disocyanates (Mixture)
 Trimellitic Acid
 o-Cresol
 1-Tetralol, 1-Tetralone Mix
 2,4-Dinitrotoilene
 2,6-Dinitrotoilene

(d) Halogenated Organic Chemicals

1,4-Phenylenediamine Dihydrochloride
 Allyl Chloride
 Benzyln Chloride
 Carbon Tetrachloride
 *Chlorinated Paraffins, 35–64 PCT, Chlorine
 Chlorobenzene
 *Chlorobenzenes (Mixed)
 Chlorodifluoroethane
 Chloroform
 *Chloromethanes
 2-Chloro-5-Methylphenol (6-chloro-m-cresol)

*Chlorophenols
 Chloroprene
 Cyanogen Chloride
 Cyanuric Chloride
 Dichloropropane
 Epichlorohydrin
 Ethyl Chloride
 *Fluorocarbons (Freons)
 Methyl Chloride
 Methylene Chloride
 Pentachlorophenol
 Phosgene
 Tetrachloroethylene
 Trichloroethylene
 Trichlorofluoromethane
 Vinylidene Chloride
 1,1-Dichloroethene
 1,1,1-Trichloroethane
 2,4-Dichlorophenol

(e) Other Organic Chemicals

Adiponitrile
 Carbon Disulfide
 Fatty Nitriles
 *Organo-Tin Compounds
 *Phosphate Esters
 Tetraethyl Lead
 Tetramethyl Lead
 *Urethane Prepolymers

[52 FR 42568, Nov. 5, 1987, as amended at 57 FR 41844, Sept. 11, 1992]

§ 414.71 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT).

Except as provided in 40 CFR 125.30 through 125.32, and in 40 CFR 414.11(i) for point sources with production in two or more subcategories, any existing point source subject to this subpart must achieve discharges not exceeding the quantity (mass) determined by multiplying the process wastewater flow subject to this subpart times the concentration listed in the following table.

<table>
<thead>
<tr>
<th>Effluent characteristics</th>
<th>BPT Effluent limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum for any one day</td>
</tr>
<tr>
<td>BODs</td>
<td>92</td>
</tr>
<tr>
<td>TSS</td>
<td>159</td>
</tr>
<tr>
<td>pH</td>
<td>(?)</td>
</tr>
</tbody>
</table>

1 All units except pH are milligrams per liter.
2 Within the range of 6.0 to 9.0 at all times.