Environmental Protection Agency

§ 98.393 Calculating GHG emissions.

(a) Calculation for individual products produced, imported, or exported.

(1) Except as provided in paragraphs (h) and (i) of this section, any refiner, importer, or exporter shall calculate CO₂ emissions from each individual petroleum product and natural gas liquid using Equation MM–1 of this section.

\[
\text{CO}_2 = \text{Product} \times \text{EF} \quad \text{(Eq. MM-1)}
\]

Where:

- \(\text{CO}_2\) = Annual CO₂ emissions that would result from the complete combustion or oxidation of each petroleum product or natural gas liquid \(\text{“i”}\) (metric tons).
- \(\text{Product}\) = Annual volume of product \(\text{“i”}\) produced, imported, or exported by the reporting party (barrels). For refiners, this volume only includes products ex refinery gate, and excludes products that entered the refinery but are not reported under §98.396(a)(1). For natural gas liquids, volumes shall reflect the individual components of the product as listed in Table MM–1 to subpart MM.
- \(\text{EF}\) = Product-specific CO₂ emission factor (metric tons CO₂ per barrel).

(2) In the event that an individual petroleum product is produced as a solid rather than liquid any refiner, importer, or exporter shall calculate CO₂ emissions using Equation MM–1 of this section.

Where:

- \(\text{CO}_2\) = Annual CO₂ emissions that would result from the complete combustion or oxidation of each petroleum product \(\text{“i”}\) (metric tons).
- \(\text{Product}\) = Annual mass of product \(\text{“i”}\) produced, imported, or exported by the reporting party (metric tons). For refiners, this mass only includes products ex refinery gate.
- \(\text{EF}\) = Product-specific CO₂ emission factor (metric tons CO₂ per metric ton of product).

§ 98.393 Calculating GHG emissions.

(b) Calculation for individual products that enter a refinery as a non-crude feedstock.

(1) Except as provided in paragraphs (h) and (i) of this section, any refiner...
shall calculate CO₂ emissions from each non-crude feedstock using Equation MM-2 of this section.

\[ CO_{2j} = \text{Feedstock}_j \times EF_j \]  
(Eq. MM-2)

Where:
CO₂j = Annual CO₂ emissions that would result from the complete combustion or oxidation of each non-crude feedstock “j” (metric tons).
Feedstock_j = Annual volume of a petroleum product or natural gas liquid “j” that enters the refinery to be further refined or otherwise used on site (barrels). For natural gas liquids, volumes shall reflect the individual components of the product as listed in table MM-1 of this subpart.
EF_j = Feedstock-specific CO₂ emission factor (metric tons CO₂ per barrel).

(2) In the event that a non-crude feedstock enters a refinery as a solid rather than liquid, the refiner shall calculate CO₂ emissions using Equation MM-2 of this section.

Where:
CO₂j = Annual CO₂ emissions that would result from the complete combustion or oxidation of each non-crude feedstock “j” (metric tons).
Feedstock_j = Annual mass of a petroleum product “j” that enters the refinery to be further refined or otherwise used on site (metric tons).
EF_j = Feedstock-specific CO₂ emission factor (metric tons CO₂ per metric ton of feedstock).

(c) Calculation for biomass co-processed with petroleum feedstocks.

(1) Refiners shall calculate CO₂ emissions from each type of biomass that enters a refinery and is co-processed with petroleum feedstocks using Equation MM-3 of this section.

\[ CO_{2m} = \text{Biomass}_m \times EF_m \]  
(Eq. MM-3)

Where:
CO₂m = Annual CO₂ emissions that would result from the complete combustion or oxidation of each type of biomass “m” (metric tons).
Biomass_m = Annual volume of a specific type of biomass that enters the refinery and is co-processed with petroleum feedstocks to produce a petroleum product reported under paragraph (a) of this section (barrels).
EF_m = Biomass-specific CO₂ emission factor (metric tons CO₂ per barrel).

(2) In the event that biomass enters a refinery as a solid rather than liquid and is co-processed with petroleum feedstocks, the refiner shall calculate CO₂ emissions from each type of biomass using Equation MM-3 of this section.

Where:
CO₂m = Annual CO₂ emissions that would result from the complete combustion or oxidation of each type of biomass “m” (metric tons).
Biomass_m = Total annual mass of a specific type of biomass that enters the refinery to be co-processed with petroleum feedstocks to produce a petroleum product reported under paragraph (a) of this section (metric tons).
EF_m = Biomass-specific CO₂ emission factor (metric tons CO₂ per metric ton of biomass).

(d) Summary calculation for refinery products. Refiners shall calculate annual CO₂ emissions from all products using Equation MM-4 of this section.

\[ CO_{2r} = \sum (CO_{2i}) - \sum (CO_{2j}) - \sum (CO_{2m}) \]  
(Eq. MM-4)

Where:
CO₂r = Annual CO₂ emissions that would result from the complete combustion or oxidation of each petroleum product or natural gas liquid (ex refinery gate) minus non-crude feedstocks and any biomass to be co-processed with petroleum feedstocks.
CO₂i = Annual CO₂ emissions that would result from the complete combustion or oxidation of each non-crude feedstock “i” (metric tons).
CO₂j = Annual CO₂ emissions that would result from the complete combustion or oxidation of each petroleum product or natural gas liquid “j” (metric tons).
CO₂m = Annual CO₂ emissions that would result from the complete combustion or oxidation of each type of biomass “m” (metric tons).

(e) Summary calculation for importer and exporter products. Importers and exporters shall calculate annual CO₂ emissions from all products using Equation MM-5 of this section.
emissions from all petroleum products and natural gas liquids imported or exported, respectively, using Equations MM-1 and MM-5 of this section.

\[
CO_{2x} = \sum (CO_{2i}) \quad \text{(Eq. MM-5)}
\]

Where:
- \(CO_{2x}\) = Annual \(CO_2\) emissions that would result from the complete combustion or oxidation of all petroleum products and natural gas liquids (metric tons).
- \(CO_{2i}\) = Annual \(CO_2\) emissions that would result from the complete combustion or oxidation of each petroleum product or natural gas liquid “i” (metric tons).

(5) Emission factors for petroleum products and natural gas liquids. The emission factor (\(EF_{i,j}\)) for each petroleum product and natural gas liquid shall be determined using either of the calculation methods described in paragraphs (f)(1) or (f)(2) of this section. The same calculation method must be used for the entire quantity of the product for the reporting year. For refiners, the quantity of a product that enters a refinery (i.e., a non-crude feedstock) is considered separate from the quantity of a product ex refinery gate.

(1) Calculation Method 1. To determine the emission factor (i.e., \(EF_i\) in Equation MM-1) for solid products, multiply the default carbon share factor (i.e., percent carbon by mass) in column B of Table MM-1 to this subpart for the appropriate product by 44/12. For all other products, use the default \(CO_2\) emission factor listed in column C of Table MM-1 of this subpart for the appropriate product.

(2) Calculation Method 2.

(i) For solid products, develop emission factors according to Equation MM-6 of this section using a value of 1 for density and direct measurements of carbon share according to methods set forth in \(98.394(c)\). For all other products, develop emission factors according to Equation MM-6 of this section using direct measurements of density and carbon share according to methods set forth in \(98.394(c)\).

\[
EF_{i,j} = \text{Density} \times \text{Carbon Share} \times (44/12) \quad \text{(Eq. MM-6)}
\]

Where:
- \(EF_{i,j}\) = Emission factor of the petroleum product or natural gas liquid (metric tons \(CO_2\) per barrel or per metric ton of product).
- Density = Density of the petroleum product or natural gas liquid (metric tons per barrel for non-solid products, 1 for solid products).
- Carbon share = Percent of total mass that carbon represents in the petroleum product or natural gas liquid, expressed as a fraction (e.g., 75% would be expressed as 0.75 in the above equation).
- 44/12 = Conversion factor for carbon to carbon dioxide.

(ii) If you use a standard method that involves gas chromatography to determine the percent mass of each component in a product, calculate the product’s carbon share using Equation MM-7 of this section.

\[
\text{Carbon Share} = \sum (\%\text{Composition}_{i...n} \times \%\text{Mass}_{i...n}) \quad \text{(Eq. MM-7)}
\]

Where:
- Carbon Share = Percent of total mass that carbon represents in the petroleum product or natural gas liquid.
- \(\%\text{Composition}_{i...n}\) = Percent of total mass that each molecular component in the petroleum product or natural gas liquid represents as determined by the procedures in the selected standard method.
- \(\%\text{Mass}_{i...n}\) = Percent of total mass that carbon represents in each molecular component of the petroleum product or natural gas liquid.

(g) Emission factors for biomass co-processed with petroleum feedstocks. Refiners shall use the most appropriate default \(CO_2\) emission factor (\(EF_m\)) for biomass...
§ 98.393

40 CFR Ch. 1 (7–1–13 Edition)

in Table MM-2 of this subpart to calculate CO₂ emissions in paragraph (c) of this section.

(h) Special procedures for blended biomass-based fuels. In the event that some portion of a petroleum product is biomass-based and was not derived by co-processing biomass and petroleum feedstocks together (i.e., the petroleum product was produced by blending a petroleum-based product with a biomass-based fuel), the reporting party shall calculate emissions for the petroleum product according to one of the methods in paragraphs (h)(1) through (h)(4) of this section, as appropriate.

(1) A reporter using Calculation Methodology 1 to determine the emission factor of a petroleum product shall calculate the CO₂ emissions associated with that product using Equation MM-8 of this section in place of Equation MM-1 of this section.

\[
\text{CO}_2_i = \text{Product}_i \times \text{EF}_i \times \%\text{Vol}_i \quad \text{(Eq. MM-8)}
\]

Where:
\[\text{CO}_2_i\] = Annual CO₂ emissions that would result from the complete combustion or oxidation of each petroleum product “i” (metric tons).
\[\text{Product}_i\] = Annual volume of each petroleum product “i” produced, imported, or exported by the reporting party (barrels). For refiners, this volume only includes products ex refinery gate.
\[\text{EF}_i\] = Petroleum product-specific CO₂ emission factor (metric tons CO₂ per barrel) from Table MM-1 of this subpart.
\[\%\text{Vol}_i\] = Percent volume of product “i” that is petroleum-based, not including any denaturant that may be present in any ethanol product, expressed as a fraction (e.g., 75% would be expressed as 0.75 in the above equation).

(2) A refinery using Calculation Methodology 1 of this subpart to determine the emission factor of a non-crude petroleum feedstock shall calculate the CO₂ emissions associated with that feedstock using Equation MM-9 of this section in place of Equation MM-2 of this section.

\[
\text{CO}_2_j = \text{Feedstock}_j \times \text{EF}_j \times \%\text{Vol}_j \quad \text{(Eq. MM-9)}
\]

Where:
\[\text{CO}_2_j\] = Annual CO₂ emissions that would result from the complete combustion or oxidation of each non-crude feedstock “j” (metric tons).
\[\text{Feedstock}_j\] = Annual volume of each petroleum product “j” that enters the refinery as a feedstock to be further refined or otherwise used on site (barrels).
\[\text{EF}_j\] = Non-crude petroleum feedstock-specific CO₂ emission factor (metric tons CO₂ per barrel).
\[\%\text{Vol}_j\] = Percent volume of feedstock “j” that is petroleum-based, not including any denaturant that may be present in any ethanol product, expressed as a fraction (e.g., 75% would be expressed as 0.75 in the above equation).

(3) Calculation Method 2 procedures for products.

(1) A reporter using Calculation Method 2 of this subpart to determine the emission factor of a petroleum product that does not contain denatured ethanol must calculate the CO₂ emissions associated with that product using Equation MM-10 of this section in place of Equation MM-1 of this section.

\[
\text{CO}_2_i = (\text{Product}_i \times \text{EF}_i) - (\text{Product}_i \times \text{EF}_m \times \%\text{Vol}_m) \quad \text{(Eq. MM-10)}
\]
where:

\[ \text{CO}_2_i = \text{Annual CO}_2 \text{ emissions that would result from the complete combustion or oxidation of each product “}i\text{” (metric tons)}. \]

\[ \text{Product}_i = \text{Annual volume of each petroleum product “}i\text{” produced, imported, or exported by the reporting party (barrels).} \]

For refiners, this volume only includes products ex refinery gate.

\[ \text{EF}_i = \text{Product-specific CO}_2 \text{ emission factor (metric tons CO}_2 \text{ per barrel).} \]

\[ \text{EF}_m = \text{Default CO}_2 \text{ emission factor from Table MM–2 to subpart MM that most closely represents the component of product “}i\text{” that is biomass-based.} \]

\[ \%\text{Vol}_m = \text{Percent volume of petroleum product “}i\text{” that is biomass-based, expressed as a fraction (e.g., }75\% \text{ would be expressed as }0.75 \text{ in the above equation).} \]

(ii) In the event that a petroleum product contains denatured ethanol, importers and exporters must follow Calculation Method 1 procedures in paragraph (h)(1) of this section; and refiners must sample the petroleum portion of the blended biomass-based fuel prior to blending and calculate CO\(_2\) emissions using Equation MM–10a of this section.

\[ \text{CO}_2_i = \text{Product}_i \times \text{EF}_i \quad \text{(Eq. MM-10a)} \]

where:

\[ \text{CO}_2_i = \text{Annual CO}_2 \text{ emissions that would result from the complete combustion or oxidation of each biomass-blended fuel “}i\text{” (metric tons)}. \]

\[ \text{Product}_p = \text{Annual volume of the petroleum-based portion of each biomass-blended fuel “}i\text{” produced by the refiner (barrels).} \]

\[ \text{EF}_i = \text{Petroleum product-specific CO}_2 \text{ emission factor (metric tons CO}_2 \text{ per barrel).} \]

(4) Calculation Method 2 procedures for non-crude feedstocks.

(i) A refiner using Calculation Method 2 of this subpart to determine the emission factor of a non-crude petroleum feedstock that does not contain denatured ethanol must calculate the CO\(_2\) emissions associated with that feedstock using Equation MM–11 of this section in place of Equation MM–2 of this section.

\[ \text{CO}_2_j = (\text{Feedstock}_j \times \text{EF}_j) - (\text{Feedstock}_j \times \text{EF}_m \times \%\text{Vol}_m) \quad \text{(Eq. MM-11)} \]

where:

\[ \text{CO}_2_j = \text{Annual CO}_2 \text{ emissions that would result from the complete combustion or oxidation of each non-crude feedstock “}j\text{” (metric tons).} \]

\[ \text{Feedstock}_j = \text{Annual volume of each petroleum product “}j\text{” that enters the refinery to be further refined or otherwise used on site (barrels).} \]

\[ \text{EF}_j = \text{Feedstock-specific CO}_2 \text{ emission factor (metric tons CO}_2 \text{ per barrel).} \]

\[ \text{EF}_m = \text{Default CO}_2 \text{ emission factor from Table MM–2 to subpart MM that most closely represents the component of petroleum product “}j\text{” that is biomass-based.} \]

\[ \%\text{Vol}_m = \text{Percent volume of non-crude feedstock “}j\text{” that is biomass-based, expressed as a fraction (e.g., }75\% \text{ would be expressed as }0.75 \text{ in the above equation).} \]

(ii) In the event that a non-crude feedstock contains denatured ethanol, refiners must follow Calculation Method 1 procedures in paragraph (h)(2) of this section.

(i) Optional procedures for blended products that do not contain biomass.

(1) In the event that a reporter produces, imports, or exports a blended product that does not include biomass, the reporter may calculate emissions for the blended product according to the method in paragraph (i)(2) of this section. In the event that a refiner receives a blended non-crude feedstock that does not include biomass, the refiner may calculate emission for the blended non-crude feedstock according to the method in paragraph (i)(3) of this section. The procedures in this section may be used only if all of the following criteria are met:

(i) The reporter knows the relative proportion of each component of the blend (i.e., the mass or volume percentage).

(ii) Each component of blended product “}i\text{” or blended non-crude feedstock “}j\text{” meets the strict definition of a product listed in Table MM–1 to subpart MM.
§ 98.394 Monitoring and QA/QC requirements.

(a) Determination of quantity.

(1) The quantity of petroleum products, natural gas liquids, and biomass, as well as the quantity of crude oil measured on site at a refinery, shall be determined as follows:

(i) Where an appropriate standard method published by a consensus-based standards organization exists, such a method shall be used. Consensus-based standards organizations include, but are not limited to, the following: ASTM International, the American National Standards Institute (ANSI), the American Gas Association (AGA), the...