880

\[\text{CO}_2 = \sum_{k=1}^{n} E_{\text{CO}_2 k} \]
(Eq. GG-2)

Where:

- \(\text{CO}_2 \) = Annual combined CO\(_2\) emissions from all Waelz kilns or electrothermic furnaces (tons).
- \(E_{\text{CO}_2 k} \) = Annual CO\(_2\) emissions from each Waelz kiln or electrothermic furnace \(k \) calculated using Equation GG–1 of this section (tons).
- \(n \) = Total number of Waelz kilns or electrothermic furnaces at facility used for the zinc production.

(c) If GHG emissions from a Waelz kiln or electrothermic furnace are vented through the same stack as any combustion unit or process equipment that reports CO\(_2\) emissions using a CEMS that complies with the Tier 4 Calculation Methodology in subpart C of this part (General Stationary Fuel Combustion Sources), then the calculation methodology in paragraph (b) of this section shall not be used to calculate process emissions. The owner or operator shall report under this subpart the combined stack emissions according to the Tier 4 Calculation Methodology in §98.33(a)(4) and all associated requirements for Tier 4 in subpart C of this part.

§ 98.334 Monitoring and QA/QC requirements.

If you determine CO\(_2\) emissions using the carbon input procedure in §98.333(b)(1) and (b)(2), you must meet the requirements specified in paragraphs (a) and (b) of this section.

(a) Determine the mass of each solid carbon-containing input material consumed using facility instruments, procedures, or records used for accounting purposes including direct measurement weighing or through the use of purchase records same plant instruments or procedures that are used for accounting purposes (such as weigh hoppers, belt weigh feeders, weighed purchased quantities in shipments or containers, combination of bulk density and volume measurements, etc.). Record the total mass for the materials consumed each calendar month and sum the monthly mass to determine the annual mass for each input material.

(b) For each input material identified in paragraph (a) of this section, you must determine the average carbon content of the material consumed or used in the calendar year using the methods specified in either paragraph (b)(1) or (b)(2) of this section.

(1) Information provided by your material supplier.

(2) Collecting and analyzing at least three representative samples of the material using the appropriate testing method. For each carbon-containing input material identified for which the carbon content is not provided by your material supplier, the carbon content of the material must be analyzed at least annually using the appropriate standard methods (and their QA/QC procedures), which are identified in paragraphs (b)(2)(i) through (b)(2)(iii) of this section, as applicable. If you document that a specific process input or output contributes less than one percent of the total mass of carbon into or out of the process, you do not have to determine the monthly mass or annual carbon content of that input or output.

(ii) Using ASTM D5373–08 Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal (incorporated by reference, see §98.7), analyze carbonaceous reducing agents and carbon electrodes.

(iii) Using ASTM C25–06 Standard Test Methods for Chemical Analysis of Limestone, Quicklime, and Hydrated Lime (incorporated by reference, see §98.7), analyze flux materials such as limestone or dolomite.

§ 98.335 Procedures for estimating missing data.

For the carbon input procedure in §98.333(b), a complete record of all measured parameters used in the GHG emissions calculations is required (e.g., raw materials carbon content values, etc.). Therefore, whenever a quality-assured value of a required parameter is