§ 98.150 Definition of the source category.

(a) An HCFC–22 production process produces HCFC–22 (chlorodifluoromethane, or CHClF$_2$) from chloroform (CHCl$_3$) and hydrogen fluoride (HF).

(b) An HFC–23 destruction process is any process in which HFC–23 undergoes destruction. An HFC–23 destruction process may or may not be co-located with an HCFC–22 production process at the same facility.

§ 98.151 Reporting threshold.

You must report GHG emissions under this subpart if your facility contains an HCFC–22 production or HFC–23 destruction process and the facility meets the requirements of either § 98.2(a)(1) or (a)(2).

§ 98.152 GHGs to report.

(a) You must report under subpart C of this part (General Stationary Fuel Combustion Sources) the emissions of CO$_2$, CH$_4$, and N$_2$O from each stationary combustion unit following the requirements of subpart C.

(b) You must report HFC–23 emissions from HCFC–22 production processes and HFC–23 destruction processes.

§ 98.153 Calculating GHG emissions.

(a) The mass of HFC–23 generated from each HCFC–22 production process shall be estimated by using one of two methods, as applicable:

(1) Where the mass flow of the combined stream of HFC–23 and another reaction product (e.g., HCl) is measured, multiply the weekly (or more frequent) HFC–23 concentration measurement (which may be the average of more frequent concentration measurements) by the weekly (or more frequent) mass flow of the combined stream of HFC–23 and the other product. To estimate annual HFC–23 production, sum the weekly (or more frequent) estimates of the quantities of HFC–23 produced over the year. This calculation is summarized in Equation O–1 of this section:

$$G_{23} = \sum_{p=1}^{n} c_{23} \cdot F_p \cdot 10^{-3} \quad (\text{Eq. O–1})$$

Where:

- G_{23} = Mass of HFC–23 generated annually (metric tons).
- c_{23} = Fraction HFC–23 by weight in HFC–23/other product stream.
- F_p = Mass flow of HFC–23/other product stream during the period p (kg).
- p = Period over which mass flows and concentrations are measured.
- n = Number of concentration and flow measurement periods for the year.
- 10^{-3} = Conversion factor from kilograms to metric tons.

(2) Where the mass of only a reaction product other than HFC–23 (either HCFC–22 or HCl) is measured, multiply the ratio of the weekly (or more frequent) measurement of the HFC–23 concentration and the weekly (or more frequent) measurement of the other product concentration by the weekly (or more frequent) mass produced of the other product. To estimate annual HFC–23 production, sum the weekly (or more frequent) estimates of the quantities of HFC–23 produced over the year. This calculation is summarized in Equation O–2 of this section, assuming that the other product is HCFC–22. If the other product is HCl, HCl may be substituted for HCFC–22 in Equations O–2 and O–3 of this section.

$$G_{23} = \sum_{p=1}^{n} \left(\frac{c_{23}}{c_{22}} \right) \cdot P_{22} \cdot 10^{-3} \quad (\text{Eq. O–2})$$

Where:

- G_{23} = Mass of HFC–23 generated annually (metric tons).
- c_{22} = Fraction HCFC–22 by weight in HCFC–22/HFC–23 stream.
- P_{22} = Mass of HCFC–22 produced over the period p (kg), calculated using Equation O–3 of this section.
- p = Period over which masses and concentrations are measured.
- n = Number of concentration and mass measurement periods for the year.
- 10^{-3} = Conversion factor from kilograms to metric tons.