§ 250.418 What additional information must I submit with my APD?

You must include the following with the APD:

(a) Rated capacities of the drilling rig and major drilling equipment, if not already on file with the appropriate District office;

(b) A drilling fluids program that includes the minimum quantities of drilling fluids and drilling fluid materials, including weight materials, to be kept at the site;

(c) A proposed directional plot if the well is to be directionally drilled;

(d) A Hydrogen Sulfide Contingency Plan (see §250.490), if applicable, and not previously submitted;

(e) A welding plan (see §§ 250.109 to 250.113) if not previously submitted;

(f) In areas subject to subfreezing conditions, evidence that the drilling equipment, BOP systems and components, diverter systems, and other associated equipment and materials are suitable for operating under such conditions;

(g) A request for approval if you plan to wash out below the mudline or displace some cement to facilitate casing removal upon well abandonment;

(h) Certification of your casing and cementing program as required in §250.420(a)(6);

(i) Descriptions of qualifications required by §250.416(g) of the independent third-party; and

(j) Such other information as the District Manager may require.

CASING AND CEMENTING REQUIREMENTS

§ 250.420 What well casing and cementing requirements must I meet?

You must case and cement all wells. Your casing and cementing programs must meet the requirements of this section and of §§250.421 through 250.426.

(a) Casing and cementing program requirements. Your casing and cementing programs must:

(1) Properly control formation pressures and fluids;

(2) Prevent the direct or indirect release of fluids from any stratum through the wellbore into offshore waters;

(3) Prevent communication between separate hydrocarbon-bearing strata;

(4) Protect freshwater aquifers from contamination;

(5) Support unconsolidated sediments; and

(6)(i) Include a certification signed by a registered professional engineer that the casing and cementing design is appropriate for the purpose for which it is intended under expected wellbore conditions, and is sufficient to satisfy the tests and requirements of this section and §250.423. Submit this certification with your APD (Form BSEE–0123).

(ii) You must have the registered professional engineer involved in the casing and cementing design process.

(iii) The registered professional engineer must be registered in a state of the United States and have sufficient expertise and experience to perform the certification.

(b) Casing requirements. (1) You must design casing (including liners) to withstand the anticipated stresses imposed by tensile, compressive, and buckling loads; burst and collapse pressures; thermal effects; and combinations thereof.

(2) The casing design must include safety measures that ensure well control during drilling and safe operations during the life of the well.

(3) On all wells that use subsea BOP stacks, you must include two independent barriers, including one mechanical barrier, in each annular flow path (examples of barriers include, but are not limited to, primary cement job and seal assembly). For the final casing string (or liner if it is your final string), you must install one mechanical barrier in addition to cement to prevent flow in the event of a failure in the cement. A dual float valve, by itself, is not considered a mechanical barrier. These barriers cannot be modified prior to or during completion or abandonment operations. The BSEE District Manager may approve alternative options under §250.141. You must submit documentation of this installation to BSEE in the End-of-Operations Report (Form BSEE–0125).

(c) Cementing requirements. You must design and conduct your cementing jobs so that cement composition, placement techniques, and waiting
§ 250.421 What are the casing and cementing requirements by type of casing string?

The table in this section identifies specific design, setting, and cementing requirements for casing strings and liners. For the purposes of subpart D, the casing strings in order of normal installation are as follows: drive or structural, conductor, surface, intermediate, and production casings (including liners). The District Manager may approve or prescribe other casing and cementing requirements where appropriate.

<table>
<thead>
<tr>
<th>Casing type</th>
<th>Casing requirements</th>
<th>Cementing requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Drive or Structural</td>
<td>Set by driving, jetting, or drilling to the minimum depth as approved or prescribed by the District Manager.</td>
<td>If you drilled a portion of this hole, you must use enough cement to fill the annular space back to the mudline. Use cement to fill the calculated annular space back to the mudline. Verify annular fill by observing cement returns. Use additional cement to ensure fill-back to the mudline.</td>
</tr>
<tr>
<td>(b) Conductor</td>
<td>Design casing and select setting depths based on relevant engineering and geologic factors. Use cement to fill the calculated annular space to at least 200 feet inside the conductor casing. Use cement to fill the calculated annular space to at least 200 feet inside the conductor casing. Verify annular fill by observing cement returns. Use additional cement to ensure fill-back to the mudline.</td>
<td></td>
</tr>
<tr>
<td>(c) Surface</td>
<td>Design casing and select setting depths based on relevant engineering and geologic factors. Use cement to cover and isolate all hydrocarbon-bearing zones and isolate abnormal pressure intervals from normal pressure intervals in the well. Use cement to cover and isolate all hydrocarbon-bearing zones and isolate abnormal pressure intervals from normal pressure intervals in the well.</td>
<td></td>
</tr>
<tr>
<td>(d) Intermediate</td>
<td>Design casing and select setting depth based on anticipated or encountered geologic characteristics or wellbore conditions. Use cement to cover and isolate all hydrocarbon-bearing zones above the shoe. Use cement to cover and isolate all hydrocarbon-bearing zones above the shoe. Use cement to cover and isolate all hydrocarbon-bearing zones above the shoe.</td>
<td></td>
</tr>
<tr>
<td>(e) Production</td>
<td>Design casing and select setting depth based on anticipated or encountered geologic characteristics or wellbore conditions. Use cement to cover and isolate all hydrocarbon-bearing zones above the shoe. Use cement to cover and isolate all hydrocarbon-bearing zones above the shoe. Use cement to cover and isolate all hydrocarbon-bearing zones above the shoe.</td>
<td></td>
</tr>
<tr>
<td>(f) Liners</td>
<td>If you use a liner as conductor or surface casing, you must set the top of the liner at least 200 feet above the previous casing/liner shoe. Use cement to and isolate all hydrocarbon-bearing zones above the shoe. Use cement to and isolate all hydrocarbon-bearing zones above the shoe. Use cement to and isolate all hydrocarbon-bearing zones above the shoe.</td>
<td></td>
</tr>
</tbody>
</table>

§ 250.422 When may I resume drilling after cementing?

(a) After cementing surface, intermediate, or production casing (or liners), you may resume drilling after the cement has been held under pressure for 12 hours. For conductor casing, you may resume drilling after the cement has been held under pressure for 8 hours. One acceptable method of holding cement under pressure is to use float valves to hold the cement in place.

(b) If you plan to nipple down your diverter or BOP stack during the 8- or...