(b) A determination under paragraph (a) of this section shall be based upon the following:

(1) Core analyses that indicate the presence of a producible sulphur deposit (including an assay of elemental sulphur);
(2) An estimate of the amount of recoverable sulphur in long tons over a specified period of time; and
(3) Contour map of the cap rock together with isopach map showing the extent and estimated thickness of the sulphur deposit.

§ 250.1604 General requirements.

Sulphur lessees shall comply with requirements of this section when conducting well-drilling, well-completion, well-workover, or production operations.

(a) Equipment movement. The movement of well-drilling, well-completion, or well-workover rigs and related equipment on and off an offshore platform, or from one well to another well on the same offshore platform, including rigging up and rigging down, shall be conducted in a safe manner.

(b) Hydrogen sulfide (H₂S). When a drilling, well-completion, well-workover, or production operation is being conducted on a well in zones known to contain H₂S or in zones where the presence of H₂S is unknown (as defined in §250.490 of this part), the lessee shall take appropriate precautions to protect life and property, especially during operations such as dismantling wellhead equipment and flow lines and circulating the well. The lessee shall also take appropriate precautions when H₂S is generated as a result of sulphur production operations. The lessee shall comply with the requirements in §250.490 of this part as well as the requirements of this subpart.

(c) Welding and burning practices and procedures. All welding, burning, and hot-tapping activities involved in drilling, well-completion, well-workover or production operations shall be conducted with properly maintained equipment, trained personnel, and appropriate procedures in order to minimize the danger to life and property according to the specific requirements in §§250.109 through 250.113 of this part.

(d) Electrical requirements. All electrical equipment and systems involved in drilling, well-completion, well-workover, and production operations shall be designed, installed, equipped, protected, operated, and maintained so as to minimize the danger to life and property in accordance with the requirements of §250.114 of this part.

(e) Structures on fixed OCS platforms. Derricks, cranes, masts, substructures, and related equipment shall be selected, designed, installed, used, and maintained so as to be adequate for the potential loads and conditions of loading that may be encountered during the operations. Prior to moving equipment such as a well-drilling, well-completion, or well-workover rig or associated equipment or production equipment onto a platform, the lessee shall determine the structural capability of the platform to safely support the equipment and operations, taking into consideration corrosion protection, platform age, and previous stresses.

(f) Traveling-block safety device. All drilling units being used for drilling, well-completion, or well-workover operations that have both a traveling block and a crown block must be equipped with a safety device that is designed to prevent the traveling block from striking the crown block. The device must be checked for proper operation weekly and after each drill-line slipping operation. The results of the operational check must be entered in the operations log.

§ 250.1605 Drilling requirements.

(a) Sulphur leases. Lessees of OCS sulphur leases shall conduct drilling operations in accordance with §§250.1605 through 250.1619 of this subpart and with other requirements of this part, as appropriate.

(b) Fitness of drilling unit. (1) Drilling units shall be capable of withstanding the oceanographic and meteorological conditions for the proposed season and location of operations.
(2) Prior to commencing operation, drilling units shall be made available for a complete inspection by the District Manager.
(3) The lessee shall provide information and data on the fitness of the drilling unit to perform the proposed
drilling operation. The information shall be submitted with, or prior to, the submission of Form BSEE–0123, Application for Permit to Drill (APD), in accordance with §250.1617 of this subpart. After a drilling unit has been approved by a BSEE district office, the information required in this paragraph need not be resubmitted unless required by the District Manager or there are changes in the equipment that affect the rated capacity of the unit.

(c) Oceanographic, meteorological, and drilling unit performance data. Where oceanographic, meteorological, and drilling unit performance data are not otherwise readily available, lessees shall collect and report such data upon request to the District Manager. The type of information to be collected and reported will be determined by the District Manager in the interests of safety in the conduct of operations and the structural integrity of the drilling unit.

(d) Foundation requirements. When the lessee fails to provide sufficient information pursuant to 30 CFR 550.211 through 550.228 and 30 CFR 550.241 through 550.262 to support a determination that the seafloor is capable of supporting a specific bottom-founded drilling unit under the site-specific soil and oceanographic conditions, the District Manager may require that additional surveys and soil borings be performed and the results submitted for review and evaluation by the District Manager before approval is granted for commencing drilling operations.

(e) Tests, surveys, and samples. (1) Lessees shall drill and take cores and/or run well and mud logs through the objective interval to determine the presence, quality, and quantity of sulphur and other minerals (e.g., oil and gas) in the cap rock and the outline of the commercial sulphur deposit.

(2) Inclination surveys shall be obtained on all vertical wells at intervals not exceeding 1,000 feet during the normal course of drilling. Directional surveys giving both inclination and azimuth shall be obtained on all directionally drilled wells at intervals not exceeding 500 feet during the normal course of drilling and at intervals not exceeding 200 feet in all planned angle-change portions of the borehole.

(3) Directional surveys giving both inclination and azimuth shall be obtained on both vertically and directionally drilled wells at intervals not exceeding 500 feet prior to or upon setting a string of casing, or production liner, and at total depth. Composite directional surveys shall be prepared with the interval shown from the bottom of the conductor casing. In calculating all surveys, a correction from the true north to Universal-Transverse-Mercator-Grid-north or Lambert-Grid-north shall be made after making the magnetic-to-true-north correction. A composite dipmeter directional survey or a composite measurement while-drilling directional survey will be acceptable as fulfilling the applicable requirements of this paragraph.

(4) Wells are classified as vertical if the calculated average of inclination readings weighted by the respective interval lengths between readings from surface to drilled depth does not exceed 3 degrees from the vertical. When the calculated average inclination readings weighted by the length of the respective interval between readings from the surface to drilled depth exceeds 3 degrees, the well is classified as directional.

(5) At the request of a holder of an adjoining lease, the Regional Supervisor may, for the protection of correlative rights, furnish a copy of the directional survey to that leaseholder.

(f) Fixed drilling platforms. Applications for installation of fixed drilling platforms or structures including artificial islands shall be submitted in accordance with the provisions of subpart I, Platforms and Structures, of this part. Mobile drilling units that have their jacking equipment removed or have been otherwise immobilized are classified as fixed bottom founded drilling platforms.

(g) Crane operations. You must operate a crane installed on fixed platforms according to §250.108 of this subpart.

(h) Diesel-engine air intakes. Diesel-engine air intakes must be equipped with a device to shut down the diesel engine in the event of runaway. Diesel engines that are continuously attended must
be equipped with either remote-operated manual or automatic-shutdown devices. Diesel engines that are not continuously attended must be equipped with automatic shutdown devices.

§ 250.1606 Control of wells.

The lessee shall take necessary precautions to keep its wells under control at all times. Operations shall be conducted in a safe and workmanlike manner. The lessee shall utilize the best available and safest drilling technologies and state-of-the-art methods to evaluate and minimize the potential for a well to flow or kick. The lessee shall utilize personnel who are trained and competent and shall utilize and maintain equipment and materials necessary to assure the safety and protection of personnel, equipment, natural resources, and the environment.

§ 250.1607 Field rules.

When geological and engineering information in a field enables a District Manager to determine specific operating requirements, field rules may be established for drilling, well completion, or well workover on the District Manager’s initiative or in response to a request from a lessee; such rules may modify the specific requirements of this subpart. After field rules have been established, operations in the field shall be conducted in accordance with such rules and other requirements of this subpart. Field rules may be amended or canceled for cause at any time upon the initiative of the District Manager or upon the request of a lessee.

§ 250.1608 Well casing and cementing.

(a) General requirements. (1) For the purpose of this subpart, the several casing strings in order of normal installation are:

(i) Drive or structural,
(ii) Conductor,
(iii) Cap rock casing,
(iv) Bobtail cap rock casing (required when the cap rock casing does not penetrate into the cap rock),
(v) Second cap rock casing (brine wells), and
(vi) Production liner.

(2) The lessee shall case and cement all wells with a sufficient number of strings of casing cemented in a manner necessary to prevent release of fluids from any stratum through the wellbore (directly or indirectly) into the sea, protect freshwater aquifers from contamination, support unconsolidated sediments, and otherwise provide a means of control of the formation pressures and fluids. Cement composition, placement techniques, and waiting time shall be designed and conducted so that the cement in place behind the bottom 500 feet of casing or total length of annular cement fill, if less, attains a minimum compressive strength of 160 pounds per square inch (psi).

(3) The lessee shall install casing designed to withstand the anticipated stresses imposed by tensile, compressive, and buckling loads; burst and collapse pressures; thermal effects; and combinations thereof. Safety factors in the drilling and casing program designs shall be of sufficient magnitude to provide well control during drilling and to assure safe operations for the life of the well.

(4) In cases where cement has filled the annular space back to the mud line, the cement may be washed out or displaced to a depth not exceeding the depth of the structural casing shoe to facilitate casing removal upon well abandonment if the District Manager determines that subsurface protection against damage to freshwater aquifers and against damage caused by adverse loads, pressures, and fluid flows is not jeopardized.

(5) If there are indications of inadequate cementing (such as lost returns, cement channeling, or mechanical failure of equipment), the lessee shall evaluate the adequacy of the cementing operations by pressure testing the casing shoe. If the test indicates inadequate cementing, the lessee shall initiate remedial action as approved by the District Manager. For cap rock casing, the test for adequacy of cementing shall be the pressure testing of the annulus between the cap rock and the conductor casings. The pressure shall