§ 23.479 Level landing conditions.
(a) For a level landing, the airplane is assumed to be in the following attitudes:
(1) For airplanes with tail wheels, a normal level flight attitude.
(2) For airplanes with nose wheels, attitudes in which—
   (i) The nose and main wheels contact the ground simultaneously; and
   (ii) The main wheels contact the ground and the nose wheel is just clear of the ground.
The attitude used in paragraph (a)(2)(i) of this section may be used in the analysis required under paragraph (a)(2)(ii) of this section.
(b) When investigating landing conditions, the drag components simulating the forces required to accelerate the tires and wheels up to the landing speed (spin-up) must be properly combined with the corresponding instantaneous vertical ground reactions, and the forward-acting horizontal loads resulting from rapid reduction of the spin-up drag loads (spring-back) must be combined with vertical ground reactions at the instant of the peak forward load, assuming wing lift and a tire-sliding coefficient of friction of 0.8. However, the drag loads may not be less than 25 percent of the maximum vertical ground reactions (neglecting wing lift).
(c) In the absence of specific tests or a more rational analysis for determining the wheel spin-up and spring-back loads for landing conditions, the method set forth in appendix D of this part must be used. If appendix D of this part is used, the drag components used for design must not be less than those given by appendix C of this part.
(d) For airplanes with tip tanks or large overhung masses (such as turbopropeller or jet engines) supported by the wing, the tip tanks and the structure supporting the tanks or overhung masses must be designed for the effects of dynamic responses under the level landing conditions of either paragraph (a)(1) or (a)(2)(ii) of this section. In evaluating the effects of dynamic response, an airplane lift equal to the weight of the airplane may be assumed.

§ 23.481 Tail down landing conditions.
(a) For a tail down landing, the airplane is assumed to be in the following attitudes:
(1) For airplanes with tail wheels, an attitude in which the main and tail wheels contact the ground simultaneously.
(2) For airplanes with nose wheels, a stalling attitude, or the maximum angle allowing ground clearance by each part of the airplane, whichever is less.
(b) For airplanes with either tail or nose wheels, ground reactions are assumed to be vertical, with the wheels up to speed before the maximum vertical load is attained.

§ 23.483 One-wheel landing conditions.
For the one-wheel landing condition, the airplane is assumed to be in the level attitude and to contact the ground on one side of the main landing gear. In this attitude, the ground reactions must be the same as those obtained on that side under §23.479.

§ 23.485 Side load conditions.
(a) For the side load condition, the airplane is assumed to be in a level attitude with only the main wheels contacting the ground and with the shock absorbers and tires in their static positions.
(b) The limit vertical load factor must be 1.33, with the vertical ground reaction divided equally between the main wheels.
(c) The limit side inertia factor must be 0.83, with the side ground reaction divided between the main wheels so that—
   (1) 0.5 (W) is acting inboard on one side; and
   (2) 0.33 (W) is acting outboard on the other side.
(d) The side loads prescribed in paragraph (c) of this section are assumed to be applied at the ground contact point of main and nose gear, or main and tail gear.

§ 23.493  Braked roll conditions.

Under braked roll conditions, with the shock absorbers and tires in their static positions, the following apply:
(a) The limit vertical load factor must be 1.33.
(b) The attitudes and ground contacts must be those described in § 23.479 for level landings.
(c) A drag reaction equal to the vertical reaction at the wheel multiplied by a coefficient of friction of 0.8 must be applied at the ground contact point of each wheel with brakes, except that the drag reaction need not exceed the maximum value based on limiting brake torque.

§ 23.497  Supplementary conditions for tail wheels.

In determining the ground loads on the tail wheel and affected supporting structures, the following apply:
(a) For the obstruction load, the limit ground reaction obtained in the tail down landing condition is assumed to act up and aft through the axle at 45 degrees. The shock absorber and tire may be assumed to be in their static positions.
(b) For the side load, a limit vertical ground reaction equal to the static load on the tail wheel, in combination with a side component of equal magnitude, is assumed. In addition—
(1) If a swivel is used, the tail wheel is assumed to be swiveled 90 degrees to the airplane longitudinal axis with the resultant ground load passing through the axle;
(2) If a lock, steering device, or shimmy damper is used, the tail wheel is also assumed to be in the trailing position with the side load acting at the ground contact point; and
(c) The shock absorber and tire are assumed to be in their static positions.
(d) For airplanes with a steerable nose wheel that is controlled by hydraulic or other power, at design take-off weight with the nose wheel in any steerable position, the application of 1.33 times the full steering torque combined with a vertical reaction equal to 1.33 times the maximum static reaction on the nose gear must be assumed. However, if a torque limiting device is installed, the steering torque can be reduced to the maximum value allowed by that device.
(e) For airplanes with a steerable nose wheel that has a direct mechanical connection to the rudder pedals, the mechanism must be designed to withstand the steering torque for the

(1) Suitable design loads must be established for the tail wheel, bumper, or energy absorption device; and
(2) The supporting structure of the tail wheel, bumper, or energy absorption device must be designed to withstand the loads established in paragraph (c)(1) of this section.

§ 23.499  Supplementary conditions for nose wheels.

In determining the ground loads on nose wheels and affected supporting structures, and assuming that the shock absorbers and tires are in their static positions, the following conditions must be met:
(a) For aft loads, the limit force components at the axle must be—
(1) A vertical component of 2.25 times the static load on the wheel; and
(2) A drag component of 0.8 times the vertical load.
(b) For forward loads, the limit force components at the axle must be—
(1) A vertical component of 2.25 times the static load on the wheel; and
(2) A forward component of 0.4 times the vertical load.
(c) For side loads, the limit force components at ground contact must be—
(1) A vertical component of 2.25 times the static load on the wheel; and
(2) A side component of 0.7 times the vertical load.
(d) For airplanes with a steerable nose wheel that is controlled by hydraulic or other power, at design take-off weight with the nose wheel in any steerable position, the application of 1.33 times the full steering torque combined with a vertical reaction equal to 1.33 times the maximum static reaction on the nose gear must be assumed. However, if a torque limiting device is installed, the steering torque can be reduced to the maximum value allowed by that device.
(e) For airplanes with a steerable nose wheel that has a direct mechanical connection to the rudder pedals, the mechanism must be designed to withstand the steering torque for the