§ 429.53 Walk-in coolers and walk-in freezers.

(a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to walk-in coolers and freezers; and

(2) [Reserved]

(b) Certification reports. (1) Except that § 429.12(b)(6) applies to the certified component, the requirements of § 429.12 are applicable to manufacturers of the components of walk-in coolers and freezers (WICFs) listed in paragraph (b)(2) of this section, and;

(2) Pursuant to § 429.12(b)(13), a certification report shall include the following public product-specific information:

(i) For WICF doors: The door type, R-value of the door insulation, and a declaration that the manufacturer has incorporated the applicable design requirements. In addition, for those WICFs with transparent reach-in doors and windows: The glass type of the doors and windows (e.g., double-pane with heat reflective treatment, triple-pane glass with gas fill), and the power draw of the antisweat heater in watts per square foot of door opening.

(ii) For WICF panels: The R-value of the insulation (except for glazed portions of the doors or structural members)

(iii) For WICF fan motors: The motor purpose (i.e., evaporator fan motor or condenser fan motor), the horsepower, and a declaration that the manufacturer has incorporated the applicable design requirements.

§ 429.54 Metal halide lamp ballasts and fixtures.

(a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to metal halide lamp ballasts; and

(2) For each basic model of metal halide lamp ballast selected for testing, a sample of sufficient size, not less than four, shall be selected at random and tested to ensure that:

(i) Any represented value of estimated energy efficiency calculated as the measured output power to the lamp divided by the measured input power to the ballast (P_out/P_in), of a basic model is less than or equal to the lower of:

(A) The mean of the sample, where:

\[
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i
\]

and, \(\bar{x}\) is the sample mean; \(n\) is the number of samples; and \(x_i\) is the \(i^{th}\) sample;

Or,

(B) The lower 99-percent confidence limit (LCL) of the true mean divided by 0.99.

\[LCL = \bar{x} - t_{0.99} \left(\frac{S}{\sqrt{n}} \right)\]