which may be used by manufacturers in support of petitions for waiver. These guidelines are not mandatory and the Department may determine that they do not apply to a particular model. Depending upon a manufacturer’s approach for conducting field testing, additional data may be required. Manufacturers are encouraged to communicate with the Department to support a petition for waiver. Section 6.3 of this Appendix provides an example of field testing for a clothes washer with an adaptive water fill control system. Other features, such as the use of various spin speed selections, could be the subject of field tests.

6.2 Nonconventional Wash System Energy Consumption Test. The field test may consist of a minimum of 10 of the nonconventional clothes washers (“test clothes washers”) and 10 clothes washers already being distributed in commerce (“base clothes washers”). The tests should include a minimum of 50 energy test cycles per clothes washer. The test clothes washers and base clothes washers should be identical in construction except for the controls or systems being tested. Equal numbers of both the test clothes washer and the base clothes washer should be tested simultaneously in comparable settings to minimize seasonal or consumer laundering conditions or variations. The clothes washers should be monitored in such a way as to accurately record the average total energy and water consumption per cycle, including water heating energy when electrically heated water is used, and the energy required to remove the remaining moisture of the test load. Standby and off mode energy consumption should be measured according to section 4.4 of this test procedure. The field test results should be used to determine the best method to correlate the rating of the test clothes washer to the rating of the base clothes washer.

6.3 Adaptive water fill control system field test. (1) Section 3.2.3.1 of this Appendix defines the test method for measuring energy consumption for clothes washers which incorporate both adaptive and alternate manual water fill control systems. Energy consumption calculated by the method defined in section 3.2.3.1 of this Appendix assumes the adaptive cycle will be used 50 percent of the time. This section can be used to develop laboratory tests as defined by section 1 through section 5 of this Appendix to determine the energy consumption, water consumption, and remaining moisture content values. The following data should be measured and recorded for each wash load during the test period: Wash cycle selected, the mode of the clothes washer (adaptive or manual), clothes load dry weight (measured after the clothes washer and clothes dryer cycles are completed) in pounds, and type of articles in the clothes load (e.g., cottons, linens, permanent press). The wash loads used in calculating the in-home percentage split between adaptive and manual cycle usage should be only those wash loads which conform to the definition of the energy test cycle.

Calculate:

\[T_a = \text{The total number of adaptive control energy test cycles.} \]

\[T_m = \text{The total number of manual control energy test cycles.} \]

The percentage weighting factors:

\[P_a = \frac{T_a}{T} \times 100\% \quad \text{(the percentage weighting for adaptive control selection)} \]

\[P_m = \frac{T_m}{T} \times 100\% \quad \text{(the percentage weighting for manual control selection)} \]

(2) Energy consumption (\(E_{HE}\), \(E_{ME}\), and \(E_D\)) and water consumption (\(Q_E\)), values calculated in section 4 of this Appendix for the manual and adaptive modes, should be combined using \(P_a\) and \(P_m\) as the weighting factors.

[77 FR 13909, Mar. 7, 2012]

APPENDIXES K–L TO SUBPART B OF PART 430 [RESERVED]

APPENDIX M TO SUBPART B OF PART 430—UNIFORM TEST METHOD FOR MEASURING THE ENERGY CONSUMPTION OF CENTRAL AIR CONDITIONERS AND HEAT PUMPS

Note: The procedures and calculations that refer to off mode energy consumption (i.e., sections 3.13 and 4.2.8 of this appendix M) need not be performed to determine compliance with energy conservation standards for central air conditioners and heat pumps at this time. However, any representation related to standby mode and off mode energy consumption of these products made after