the two thermocouples recording the highest temperatures over a 60 second interval:

\[
\frac{1}{2} \left(\frac{T_{\text{High} 1} + T_{\text{High} 2}}{2} \right)_{\text{time 30 sec}} + \left(\frac{T_{\text{High} 1} + T_{\text{High} 2}}{2} \right)_{\text{time 60 sec}} \geq 430 ^\circ C
\]

If the pressure relief device releases before the end of the fifth minute after ignition, then the minimum temperature requirement does not apply.

§571.305 Standard No. 305; Electric-powered vehicles; electrolyte spillage and electrical shock protection.

S1. Scope. This standard specifies requirements for limitation of electrolyte spillage, retention of electric energy storage/conversion devices, and protection from harmful electric shock during and after a crash.

S2. Purpose. The purpose of this standard is to reduce deaths and injuries during and after a crash that occurs because of electrolyte spillage from electric energy storage devices, intrusion of electric energy storage/conversion devices into the occupant compartment, and electrical shock.

S3. Application. This standard applies to passenger cars, and to multipurpose passenger vehicles, trucks and buses with a GVWR of 4,536 kg or less, that use electrical propulsion components with working voltages more than 60 volts direct current (VDC) or 30 volts alternating current (VAC), and whose speed attainable over a distance of 1.6 km on a paved level surface is more than 40 km/h.

S4. Definitions.

Automatic disconnect means a device that when triggered, conductively separates a high voltage source from the electric power train or the rest of the electric power train.

Electric energy storage device means a high voltage source that stores energy for vehicle propulsion. This includes, but is not limited to, a high voltage battery or battery pack, rechargeable energy storage device, and capacitor module.

Electric energy storage/conversion device means a high voltage source that stores or converts energy for vehicle propulsion. This includes, but is not limited to, high voltage battery or battery pack, fuel cell stack, rechargeable energy storage device, and capacitor module.

Electric energy storage/conversion system means an assembly of electrical components that stores or converts electrical energy for vehicle propulsion. This includes, but is not limited to, high voltage batteries or battery packs, fuel cell stacks, rechargeable energy storage systems, capacitor modules, inverters, interconnects, and venting systems.
Electric power train means an assembly of electrically connected components which includes, but is not limited to, electric energy storage/conversion systems and propulsion systems.

Electric chassis means conductive parts of the vehicle whose electrical potential is taken as reference and which are: (1) conductively linked together, and (2) not high voltage sources during normal vehicle operation.

Electrical isolation of a high voltage source in the vehicle means the electrical resistance between the high voltage source and any of the vehicle's electrical chassis divided by the working voltage of the high voltage source.

High voltage source means any electric component contained in the electric power train or conductively connected to the electric power train that has a working voltage greater than 30 VAC or 60 VDC.

Propulsion system means an assembly of electric or electro-mechanical components or circuits that propel the vehicle using the energy that is supplied by a high voltage source. This includes, but is not limited to, electric motors, inverters/converters, electronic controllers, and associated wire harnesses and connectors, and coupling systems for charging rechargeable energy storage systems.

§5. General requirements. Each vehicle to which this standard applies, must meet the requirements in §5.1, §5.2, and §5.3 when tested according to §6 under the conditions of §7.

§5.1 Electrolyte spillage from propulsion batteries. Not more than 5.0 liters of electrolyte from propulsion batteries shall spill outside the passenger compartment, and no visible trace of electrolyte shall spill into the passenger compartment. Spillage is measured from the time the vehicle ceases motion after a barrier impact test until 30 minutes thereafter, and throughout any static rollover after a barrier impact test.

§5.2 Electric energy storage/conversion device retention. During and after each test specified in §6 of this standard:

(a) Electric energy storage/conversion devices shall remain attached to the vehicle by at least one component anchorage, bracket, or any structure that transfers loads from the device to the vehicle structure, and

(b) Electric energy storage/conversion devices located outside the occupant compartment shall not enter the occupant compartment.

§5.3 Electrical safety. After each test specified in §6 of this standard, each high voltage source in a vehicle must meet the electrical isolation requirements of subparagraph (a) or the voltage level requirements of subparagraph (b).

(a) The electrical isolation of the high voltage source, determined in accordance with the procedure specified in §7.6, must be greater than or equal to one of the following:

(1) 500 ohms/volt for an AC high voltage source; or

(2) 500 ohms/volt for a DC high voltage source without electrical isolation monitoring during vehicle operation; or

(3) 100 ohms/volt for a DC high voltage source with electrical isolation monitoring, in accordance with the requirements of §5.4, during vehicle operation.

(b) The voltages V1, V2, and Vb of the high voltage source, measured according to the procedure specified in §7.7, must be less than or equal to 30 VAC for AC components or 60 VDC for DC components.

§5.4 Electrical isolation monitoring. Each DC high voltage source with electrical isolation monitoring during vehicle operation pursuant to §5.3(a)(2) shall be monitored by an electrical isolation monitoring system that displays a warning for loss of isolation when tested according to §8. The system must monitor its own readiness and the warning display must be visible to the driver seated in the driver's designated seating position.

§6. Test requirements. Each vehicle to which this standard applies, under the conditions of §7, must be capable of meeting the requirements of any applicable single barrier crash/static rollover test sequence, without alteration of the vehicle during the test sequence. A particular vehicle need not meet further test requirements after having been subjected to a single barrier crash/static rollover test sequence.
§ 571.305 49 CFR Ch. V (10–1–12 Edition)

S6.1 Frontal barrier crash. The vehicle must meet the requirements of S5.1, S5.2 and S5.3 when it is traveling longitudinally forward at any speed, up to and including 48 km/h, and impacts a fixed collision barrier that is perpendicular to the line of travel of the vehicle, or at any angle up to 30 degrees in either direction from the perpendicular to the line of travel of the vehicle.

S6.2 Rear moving barrier impact. The vehicle must meet the requirements of S5.1, S5.2, and S5.3 when it is impacted from the rear by a barrier that conforms to S7.3(b) of 571.301 of this chapter and that is moving at any speed up to and including 80 km/h (50 mph) with dummies in accordance with S6.2 of 571.301 of this chapter.

S6.3 Side moving deformable barrier impact. The vehicle must meet the requirements of S5.1, S5.2 and S5.3 when it is impacted from the side by a barrier that conforms to part 587 of this chapter that is moving at any speed up to and including 54 km/h, with the appropriate 49 CFR part 572 test dummies specified in 571.214 of this chapter.

S6.4 Post-impact test static rollover. The vehicle must meet the requirements of S5.1, S5.2, and S5.3, after being rotated on its longitudinal axis to each successive increment of 90 degrees after each impact test specified in S6.1, S6.2, and S6.3.

S7. Test conditions. When the vehicle is tested according to S6, the requirements of S5.1 through S5.3 must be met under the conditions specified in S7.1 through S7.7. All measurements for calculating voltage(s) and electrical isolation are made after a minimum of 5 seconds after the vehicle comes to rest in tests specified in S6. Where a range is specified, the vehicle must be capable of meeting the requirements at all points within the range.

S7.1 Electric energy storage device state-of-charge. The electric energy storage device shall be at the state-of-charge specified in either subparagraph (a), (b), or (c):

(a) At the maximum state-of-charge in accordance with the vehicle manufacturer’s recommended charging procedures, as stated in the vehicle owner’s manual or on a label permanently affixed to the vehicle; or

(b) If the manufacturer has made no recommendation for charging procedures in the owner’s manual or on a label permanently affixed to the vehicle, at a state-of-charge of not less than 95 percent of the maximum capacity of the electric energy storage device; or

(c) If the electric energy storage device(s) is/are rechargeable only by an energy source on the vehicle, at any state-of-charge within the normal operating voltage defined by the vehicle manufacturer.

S7.2 Vehicle conditions. The switch or device that provides power from the electric energy storage/conversion system to the propulsion system is in the activated position or the ready-to-drive position.

S7.2.1 The parking brake is disengaged and the transmission, if any, is in the neutral position. In a test conducted under S6.3, the parking brake is set.

S7.2.2 Tires are inflated to the manufacturer’s specifications.

S7.2.3 The vehicle, including test devices and instrumentation, is loaded as follows:

(a) A passenger car is loaded to its unloaded vehicle weight plus its rated cargo and luggage capacity weight, secured in the luggage area, plus the necessary test dummies as specified in S6, restrained only by means that are installed in the vehicle for protection at its seating position.

(b) A multipurpose passenger vehicle, truck, or bus with a GVWR of 4536 kg or less is loaded to its unloaded vehicle weight plus the necessary dummies, as specified in S6, plus 136 kg or its rated cargo and luggage capacity weight, whichever is less. Each dummy is restrained only by means that are installed in the vehicle for protection at its seating position.

S7.3 Static rollover test conditions. In addition to the conditions of S7.1 and S7.2, the conditions of S7.4 of Sec. 571.301 of this chapter apply to the conduct of static rollover tests specified in S6.4.

S7.4 Rear moving barrier impact test conditions. In addition to the conditions of S7.1 and S7.2, the conditions of S7.3(b) and S7.6 of 571.301 of this chapter apply to the conducting of the rear
§ 571.305

moving deformable barrier impact test specified in § 571.305.

S7.5 Side moving deformable barrier impact test conditions. In addition to the conditions of § 7.1 and § 7.2, the conditions of § 8.9, § 8.10, and § 8.11 of 571.214 of this chapter apply to the conduct of the side moving deformable barrier impact test specified in § 571.305.

S7.6 Electrical isolation test procedure. In addition to the conditions of § 7.1 and § 7.2, the conditions in § 7.6.1 through § 7.6.7 apply to the measuring of electrical isolation specified in § 571.305.

S7.6.1 Prior to any barrier impact test, the energy storage/conversion system is connected to the vehicle’s propulsion system, and the vehicle ignition is in the “on” (propulsion system energized) position. Bypass any devices or systems that do not allow the propulsion system to be energized at the time of impact when the vehicle ignition is on and the vehicle is in neutral. For a high voltage source that has an automatic disconnect that is physically contained within itself, the electrical isolation measurement after the test is made from the side of the automatic disconnect connected to the electric power train or to the rest of the electric power train if the high voltage source is a component contained in the power train. For a high voltage source that has an automatic disconnect that is not physically contained within itself, the electrical isolation measurement after the test is made from both the high voltage source side of the automatic disconnect and from the side of the automatic disconnect connected to the electric power train or to the rest of the electric power train if the high voltage source is a component contained in the power train.

S7.6.2 The voltmeter used in this test has an internal resistance of at least 10 MΩ.

S7.6.3 The voltage(s) is/are measured as shown in Figure 1 and the high voltage source voltage(s) (Vb) is/are recorded. Before any vehicle impact test, Vb is equal to or greater than the nominal operating voltage as specified by the vehicle manufacturer.

S7.6.4 The voltage(s) is/are measured as shown in Figure 2, and the voltage(s) (V1) between the negative side of the high voltage source and the electrical chassis.

S7.6.5 The voltage(s) is/are measured as shown in Figure 3, and the voltage(s) (V2) between the positive side of the high voltage source and the electrical chassis.

S7.6.6 If V1 is greater than or equal to V2, insert a known resistance (Ro) between the negative side of the high voltage source and the electrical chassis. With the Ro installed, measure the voltage (V1) as shown in Figure 4 between the negative side of the high voltage source and the electrical chassis. Calculate the electrical isolation resistance (Ri) according to the formula shown. Divide Ri (in ohms) by the working voltage of the high voltage source (in volts) to obtain the electrical isolation (in ohms/volt).

S7.6.7 If V2 is greater than V1, insert a known resistance (Ro) between the positive side of the high voltage source and the electrical chassis. With the Ro installed, measure the voltage (V2) as shown in Figure 5 between the positive side of the high voltage source and the electrical chassis. Calculate the electrical isolation resistance (Ri) according to the formula shown. Divide Ri (in ohms) by the working voltage of the high voltage source (in volts) to obtain the electrical isolation (in ohms/volt).

S7.7 Voltage measurement. For the purpose of determining the voltage level of the high voltage source specified in § 571.305(b), voltage is measured as shown in Figure 1. Voltage Vb is measured across the two terminals of the voltage source. Voltages V1 and V2 are measured between the source and the electrical chassis. For a high voltage source that has an automatic disconnect that is physically contained within itself, the electrical isolation measurement after the test is made from both the side of the automatic disconnect connected to the electric power train or to the rest of the electric power train if the high voltage source is a component contained in the power train. For a high voltage source that has an automatic disconnect that is not physically contained within itself, the electrical isolation measurement after the test is made from both...
the high voltage source side of the automatic disconnect and from the side of the automatic disconnect connected to the electric power train or to the rest of the electric power train if the high voltage source is a component contained in the power train.

S8. Test procedure for on-board electrical isolation monitoring system. Prior to any impact test, the requirements of S5.4 for the on-board electrical isolation monitoring system shall be tested using the following procedure.

1. The electric energy storage device is at the state-of-charge specified in S7.1.

2. The switch or device that provides power from the high voltage system to the propulsion motor(s) is in the activated position or the ready-to-drive position.

3. Determine the isolation resistance, Ri, of the high voltage source with the electrical isolation monitoring system using the procedure outlined in S7.6.2 through S7.6.7.

4. Insert a resistor with resistance Ro equal to or greater than 1/(1/(95 times the working voltage of the high voltage source)−1/Ri) and less than 1/(1/(100 times the working voltage of the high voltage source)−1/Ri) between the positive terminal of the high voltage source and the electrical chassis.

5. The electrical isolation monitoring system indicator shall display a warning visible to the driver seated in the driver’s designated seating position.

Figure 1. S7.6.3 and S7.7 Voltage Measurements of the High Voltage Source
Figure 2. S7.6.4 Measurement for V1 Voltage between the Negative Side of the High Voltage Source and the Electrical Chassis
Figure 3. S7.6.5 Measurement for V2 Voltage between the Positive Side of the High Voltage Source and the Electrical Chassis
Figure 4. S7.6.6 Measurement for V1' Voltage across Resistor between Negative Side of the High Voltage Source and Electrical Chassis

\[
R_i = R_o (1 + V_2/V_1)((V_1 - V_1')/V_1')
\]
§ 571.401 Interior trunk release.

S1. Purpose and scope. This standard establishes the requirement for providing a trunk release mechanism that makes it possible for a person trapped inside the trunk compartment of a passenger car to escape from the compartment.

S2. Application. This standard applies to passenger cars that have a trunk compartment. This standard does not apply to passenger cars with a back door.

S3. Definitions.

Back door means a door or door system on the back end of a passenger car through which cargo can be loaded or unloaded. The term includes the hinged back door on a hatchback or a station wagon.

Trunk compartment. (a) Means a space that:

1. Is intended to be used for carrying luggage or cargo,
2. Is wholly separated from the occupant compartment of a passenger car by a permanently attached partition or by a fixed or fold-down seat back and/ or partition,
3. Has a trunk lid, and
4. Is large enough so that the three-year-old child dummy described in subpart C of part 572 can be placed inside the trunk compartment, and the trunk lid can be closed and latched with all removable equipment furnished by the passenger car manufacturer stowed in accordance with label(s) on the passenger car or information in the passenger car owner’s manual, or, if no information is provided, as located when the passenger car is delivered. (Note: For purposes of this standard, the part 572 subpart C test dummy need not be equipped with the accelerometers specified in § 572.21.)