§ 213.335 Crossties.

(a) Crossties shall be made of a material to which rail can be securely fastened.

(b) Each 39 foot segment of track shall have—

(1) A sufficient number of crossties which in combination provide effective support that will—
 (i) Hold gage within the limits prescribed in §213.323(b);
 (ii) Maintain surface within the limits prescribed in §213.331; and
 (iii) Maintain alinement within the limits prescribed in §213.327.

(2) The minimum number and type of crossties specified in paragraph (c) of this section effectively distributed to support the entire segment; and

(3) Crossties of the type specified in paragraph (c) of this section that are located at a joint location as specified in paragraph (e) of this section.

(c) For non-concrete tie construction, each 39 foot segment of Class 6 track shall have fourteen crossties; Classes 7, 8 and 9 shall have 18 crossties which are not—

(1) Broken through;

(2) Split or otherwise impaired to the extent the crossties will allow the ballast to work through, or will not hold spikes or rail fasteners;

(3) So deteriorated that the tie plate or base of rail can move laterally ¾ inch relative to the crossties;

(4) Cut by the tie plate through more than 40 percent of a crosstie’s thickness;

(5) Configured with less than 2 rail holding spikes or fasteners per tie plate; or

(6) So unable, due to insufficient fastener toeload, to maintain longitudinal restraint and maintain rail hold down and gage.

(d) For concrete tie construction, each 39 foot segment of Class 6 track shall have fourteen crossties, Classes 7, 8 and 9 shall have 16 crossties which are not—

(1) So deteriorated in the vicinity of the rail fastener such that the fastener assembly may pull out or move laterally more than ¾ inch relative to the crosstie;

(2) So deteriorated that the fastener base plate or base of rail can move laterally more than ¾ inch relative to the crossties;

(3) So deteriorated that rail seat abrasion is sufficiently deep so as to cause loss of rail fastener tooload;

(4) Completely broken through; or

(5) So unable, due to insufficient fastener tooload, to maintain longitudinal restraint and maintain rail hold down and gage.

(e) Class 6 track shall have one non-defective crosstie whose centerline is within 18 inches of the rail joint location or two crossties whose center lines are within 24 inches either side of the rail joint location. Class 7, 8, and 9 track shall have two non-defective ties within 24 inches each side of the rail joint.

(f) For track constructed without crossties, such as slab track and track connected directly to bridge structural components, the track structure shall meet the requirements of paragraphs (b)(1)(i), (ii), and (iii) of this section.

(g) In Classes 7, 8 and 9 there shall be at least three non-defective ties each side of a defective tie.

(h) Where timber crossties are in use there shall be tie plates under the running rails on at least nine of 10 consecutive ties.

(i) No metal object which causes a concentrated load by solely supporting a rail shall be allowed between the base of the rail and the bearing surface of the tie plate.

§ 213.337 Defective rails.

(a) When an owner of track to which this part applies learns, through inspection or otherwise, that a rail in that track contains any of the defects listed in the following table, a person designated under §213.305 shall determine whether or not the track may continue in use. If the person determines that the track may continue in use, operation over the defective rail is not permitted until—

(1) The rail is replaced; or
<table>
<thead>
<tr>
<th>Defect</th>
<th>Length of defect (inch)</th>
<th>Percent of rail head cross-sectional area weakened by defect</th>
<th>If defective rail is not replaced, take the remedial action prescribed in note</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>More than</td>
<td>But not more than</td>
<td>Less than</td>
</tr>
<tr>
<td>Transverse fissure</td>
<td></td>
<td>70, 100</td>
<td>5, 70, 100</td>
</tr>
<tr>
<td>Compound fissure</td>
<td></td>
<td>70, 100</td>
<td>5, 70</td>
</tr>
<tr>
<td>Detail fracture</td>
<td></td>
<td>70, 100</td>
<td>5, 100</td>
</tr>
<tr>
<td>Engine burn fracture</td>
<td></td>
<td>70, 100</td>
<td>5, 100</td>
</tr>
<tr>
<td>Defective weld</td>
<td></td>
<td>25, 100</td>
<td>5, 25, 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80, 100</td>
<td>25, 80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100, 100</td>
<td>80, 100</td>
</tr>
<tr>
<td>Horizontal split head</td>
<td>1</td>
<td>2, 100</td>
<td>2, 100</td>
</tr>
<tr>
<td>Vertical split head</td>
<td>2</td>
<td>4, 100</td>
<td>4, 100</td>
</tr>
<tr>
<td>Split web</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head web separation</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bolt hole crack</td>
<td>1</td>
<td>1, 1½</td>
<td>1½, 1½</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broken base</td>
<td>1</td>
<td>6, 8</td>
<td>6, 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordinary break</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Damaged rail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flattened rail</td>
<td>Depth > ¾</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and Length > 8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Break out in rail head.
NOTES: A. Assign person designated under §213.305 to visually supervise each operation over defective rail.
A2. Assign person designated under §213.305 to make visual inspection. That person may authorize operation to continue without visual supervision at a maximum of 10 m.p.h. for up to 24 hours prior to another such visual inspection or replacement or repair of the rail.
B. Limit operating speed over defective rail to that as authorized by a person designated under §213.305(a)(1)(i) or (ii). The operating speed cannot be over 30 m.p.h.
C. Apply joint bars bolted only through the outermost holes to defect within 20 days after it is determined to continue the track in use. Limit operating speed over defective rail to 30 m.p.h. until joint bars are applied; thereafter, limit speed to 50 m.p.h. When a search for internal rail defects is conducted under §213.339 and defects are discovered which require remedial action C, the operating speed shall be limited to 50 m.p.h., for a period not to exceed 4 days. If the defective rail has not been removed from the track or a permanent repair made within 4 days of the discovery, limit operating speed over the defective rail to 30 m.p.h. until joint bars are applied; thereafter, limit speed to 50 m.p.h.
D. Apply joint bars bolted only through the outermost holes to defect within 10 days after it is determined to continue the track in use. Limit operating speed over the defective rail to 30 m.p.h. or less as authorized by a person designated under §213.305(a)(1)(i) or (ii) until joint bars are applied; thereafter, limit speed to 50 m.p.h.
E. Apply joint bars to defect and bolt in accordance with §213.351(d) and (e).
F. Inspect rail 90 days after it is determined to continue the track in use.
G. Inspect rail 30 days after it is determined to continue the track in use.
H. Limit operating speed over defective rail to 50 m.p.h.
I. Limit operating speed over defective rail to 30 m.p.h.

(b) As used in this section—
(1) Transverse fissure means a progressive crosswise fracture starting from a crystalline center or nucleus inside the head from which it spreads outward as a smooth, bright, or dark, round or oval surface substantially at a right angle to the length of the rail. The distinguishing features of a transverse fissure from other types of fractures or defects are the crystalline center or nucleus and the nearly smooth surface of the development which surrounds it.
(2) Compound fissure means a progressive fracture originating in a horizontal split head which turns up or down in the head of the rail as a smooth, bright, or dark surface progressing until substantially at a right angle to the length of the rail. Compound fissures require examination of both faces of the fracture to locate the horizontal split head from which they originate.
(3) Horizontal split head means a horizontal progressive defect originating inside of the rail head, usually one-quarter inch or more below the running surface and progressing horizontally in all directions, and generally accompanied by a flat spot on the running surface. The defect appears as a crack lengthwise of the rail when it reaches the side of the rail head.
(4) Vertical split head means a vertical split through or near the middle of the head, and extending into or through it. A crack or rust streak may show under the head close to the web or pieces may be split off the side of the head.
(5) Split web means a lengthwise crack along the side of the web and extending into or through it.
(6) Piped rail means a vertical split in a rail, usually in the web, due to failure of the shrinkage cavity in the ingot to unite in rolling.
(7) Broken base means any break in the base of the rail.
(8) Detail fracture means a progressive fracture originating at or near the surface of the rail head. These fractures should not be confused with transverse fissures, compound fissures, or other defects which have internal origins. Detail fractures may arise from shelly spots, head checks, or flaking.
(9) Engine burn fracture means a progressive fracture originating in spots where driving wheels have slipped on top of the rail head. In developing downward they frequently resemble the compound or even transverse fissures with which they should not be confused or classified.
(10) Ordinary break means a partial or complete break in which there is no sign of a fissure, and in which none of the other defects described in this paragraph (b) are found.
(11) Damaged rail means any rail broken or injured by wrecks, broken, flat, or unbalanced wheels, slipping, or similar causes.
Flattened rail means a short length of rail, not a joint, which has flattened out across the width of the rail head to a depth of 3/8 inch or more below the rest of the rail. Flattened rail occurrences have no repetitive regularity and thus do not include corrugations, and have no apparent localized cause such as a weld or engine burn. Their individual length is relatively short, as compared to a condition such as head flow on the low rail of curves.

Bolt hole crack means a crack across the web, originating from a bolt hole, and progressing on a path either inclined upward toward the rail head or inclined downward toward the base. Fully developed bolt hole cracks may continue horizontally along the head/web or base/web fillet, or they may progress into and through the head or base to separate a piece of the rail end from the rail. Multiple cracks occurring in one rail end are considered to be a single defect. However, bolt hole cracks occurring in adjacent rail ends within the same joint shall be reported as separate defects.

Defective weld means a field or plant weld containing any discontinuities or pockets, exceeding 5 percent of the rail head area individually or 10 percent in the aggregate, oriented in or near the transverse plane, due to incomplete penetration of the weld metal between the rail ends, lack of fusion between weld and rail end metal, entrainment of slag or sand, under-head or other shrinkage cracking, or fatigue cracking. Weld defects may originate in the rail head, web, or base, and in some cases, cracks may progress from the defect into either or both adjoining rail ends.

Head and web separation means a progressive fracture, longitudinally separating the head from the web of the rail at the head fillet area.

§ 213.341 Initial inspection of new rail and welds.

The track owner shall provide for the initial inspection of newly manufactured rail, and for initial inspection of new welds made in either new or used rail. A track owner may demonstrate compliance with this section by providing for:

(a) In-service inspection. A scheduled periodic inspection of rail and welds that have been placed in service, if conducted in accordance with the provisions of §213.339, and if conducted not later than 90 days after installation, shall constitute compliance with paragraphs (b) and (c) of this section;

(b) Mill inspection. A continuous inspection at the rail manufacturer’s mill shall constitute compliance with the requirement for initial inspection of new rail, provided that the inspection equipment meets the applicable requirements specified in §213.339. The track owner shall obtain a copy of the manufacturer’s report of inspection and retain it as a record until the rail receives its first scheduled inspection under §213.339;

(c) Welding plant inspection. A continuous inspection at a welding plant, if