§ 192.923 How is direct assessment used and for what threats?

(a) General. An operator may use direct assessment either as a primary assessment method or as a supplement to the other assessment methods allowed under this subpart. An operator may only use direct assessment as the primary assessment method to address the identified threats of external corrosion (ECDA), internal corrosion (ICDA), and stress corrosion cracking (SCCDA).

(b) Primary method. An operator using direct assessment as a primary assessment method must have a plan that complies with the requirements in—

(1) ASME/ANSI B31.8S (incorporated by reference, see § 192.7), section 6.4; NACE SP0502–2006 (incorporated by reference, see § 192.7); and § 192.925 if addressing external corrosion (ECDA).

(2) ASME/ANSI B31.8S, section 6.4 and appendix B2, and § 192.927 if addressing internal corrosion (ICDA).

(3) ASME/ANSI B31.8S, appendix A3, and § 192.929 if addressing stress corrosion cracking (SCCDA).

(c) Supplemental method. An operator using direct assessment as a supplemental assessment method for any applicable threat must have a plan that follows the requirements for confirmatory direct assessment in § 192.931.

§ 192.925 What are the requirements for using External Corrosion Direct Assessment (ECDA)?

(a) Definition. ECDA is a four-step process that combines preassessment, indirect inspection, direct examination, and post assessment to evaluate the threat of external corrosion to the integrity of a pipeline.

(b) General requirements. An operator that uses direct assessment to assess the threat of external corrosion must follow the requirements in this section, in ASME/ANSI B31.8S (incorporated by reference, see § 192.7), section 6.4, and in NACE SP0502–2006 (incorporated by reference, see § 192.7). An operator must develop and implement a direct assessment plan that has procedures addressing preassessment, indirect examination, direct examination, and post-assessment. If the ECDA detects pipeline coating damage, the operator must also integrate the data from the ECDA with other information from the data integration (§ 192.917(b)) to evaluate the covered segment for the threat of third party damage, and to address the threat as required by § 192.917(e)(1).

(1) Preassessment. In addition to the requirements in ASME/ANSI B31.8S section 6.4 and NACE SP0502–2006, section 3, the plan’s procedures for preassessment must include—

(i) Provisions for applying more restrictive criteria when conducting ECDA for the first time on a covered segment; and

(ii) The basis on which an operator selects at least two different, but complementary indirect assessment tools to assess each ECDA Region. If an operator utilizes an indirect inspection method that is not discussed in Appendix A of NACE SP0502–2006, the operator must demonstrate the applicability, validation basis, equipment used, application procedure, and utilization of data for the inspection method.

(2) Indirect examination. In addition to the requirements in ASME/ANSI B31.8S section 6.4 and NACE SP0502–2006, section 4, the plan’s procedures for indirect examination of the ECDA regions must include—

(i) Provisions for applying more restrictive criteria when conducting

§ 192.920 How is baseline assessment conducted?
ECDA for the first time on a covered segment;

(ii) Criteria for identifying and documenting those indications that must be considered for excavation and direct examination. Minimum identification criteria include the known sensitivities of assessment tools, the procedures for using each tool, and the approach to be used for decreasing the physical spacing of indirect assessment tool readings when the presence of a defect is suspected;

(iii) Criteria for defining the urgency of excavation and direct examination of each indication identified during the indirect examination. These criteria must specify how an operator will define the urgency of excavating the indication as immediate, scheduled or monitored; and

(iv) Criteria for scheduling excavation of indications for each urgency level.

(3) Direct examination. In addition to the requirements in ASME/ANSI B31.8S section 6.4 and NACE SP0502-2008, section 5, the plan’s procedures for direct examination of indications from the indirect examination must include—

(i) Provisions for applying more restrictive criteria when conducting ECDA for the first time on a covered segment;

(ii) Criteria for deciding what action should be taken if either:

(A) Corrosion defects are discovered that exceed allowable limits (Section 5.5.2.2 of NACE SP0502-2008), or

(B) Root cause analysis reveals conditions for which ECDA is not suitable (Section 5.6.2 of NACE SP0502-2008);

(iii) Criteria and notification procedures for any changes in the ECDA Plan, including changes that affect the severity classification, the priority of direct examination, and the time frame for direct examination of indications; and

(iv) Criteria that describe how and on what basis an operator will reclassify and reprioritize any of the provisions that are specified in section 5.9 of NACE SP0502-2008.

(4) Post assessment and continuing evaluation. In addition to the requirements in ASME/ANSI B31.8S section 6.4 and NACE SP0502-2008, section 6, the plan’s procedures for post assessment of the effectiveness of the ECDA process must include—

(i) Measures for evaluating the long-term effectiveness of ECDA in addressing external corrosion in covered segments; and

(ii) Criteria for evaluating whether conditions discovered by direct examination of indications in each ECDA region indicate a need for reassessment of the covered segment at an interval less than that specified in §192.939. (See Appendix D of NACE SP0502-2008.)

§ 192.927 What are the requirements for using Internal Corrosion Direct Assessment (ICDA)?

(a) Definition. Internal Corrosion Direct Assessment (ICDA) is a process an operator uses to identify areas along the pipeline where fluid or other electrolyte introduced during normal operation or by an upset condition may reside, and then focuses direct examination on the locations in covered segments where internal corrosion is most likely to exist. The process identifies the potential for internal corrosion caused by microorganisms, or fluid with CO₂, O₂, hydrogen sulfide or other contaminants present in the gas.

(b) General requirements. An operator using direct assessment as an assessment method to address internal corrosion in a covered pipeline segment must follow the requirements in this section and in ASME/ANSI B31.8S (incorporated by reference, see §192.7), section 6.4 and appendix B2. The ICDA process described in this section applies only for a segment of pipe transporting nominally dry natural gas, and not for a segment with electrolyte nominally present in the gas stream. If an operator uses ICDA to assess a covered segment operating with electrolyte present in the gas stream, the operator must develop a plan that demonstrates how it will conduct ICDA in the segment to effectively address internal corrosion, and must provide notification in accordance with §192.921(a)(4) or §192.937(c)(4).

(c) The ICDA plan. An operator must develop and follow an ICDA plan that