(d) The gas pressure at 130 °F in the tank shall not exceed \(\frac{7}{10} \) of the marked test pressure of the tank.

§ 179.500–4 Thickness of wall.

(a) Minimum thickness of wall of each finished tank shall be such that at a pressure equal to \(\frac{7}{10} \) of the marked test pressure of the tank, the calculated fiber stress in psi at inner wall of tank multiplied by 3.0 will not exceed the tensile strength of any specimen taken from the tank and tested as prescribed in §179.500–7(b). Minimum wall thickness shall be \(\frac{1}{4} \) inch.

(b) Calculations to determine the maximum marked test pressure permitted to be marked on the tank shall be made by the formula:

\[
P = \frac{10S(D^2 - d^2)}{[T(D^2 + d^2)]}
\]

Where:

\(P \) = Maximum marked test pressure permitted;

\(S \) = \(\frac{U}{3.0} \)

Where:

\(U \) = Tensile strength of that specimen which shows the lower tensile strength of the two specimens taken from the tank and tested as prescribed in §179.500–7(b).

\(3 \) = Factor of safety.

\((D^2 - d^2)(D^2 + d^2) \) = The smaller value obtained for this factor by the operations specified in §179.500–4(c).

(c) Measure at one end, in a plane perpendicular to the longitudinal axis of the tank and at least 18 inches from that point to necking-down:

\(d \) = Maximum inside diameter (inches) for the location under consideration; to be determined by direct measurement to an accuracy of 0.05 inch.

\(t \) = Minimum thickness of wall for the location under consideration; to be determined by direct measurement to an accuracy of 0.001 inch.

Take \(D = d + 2t \).

Calculate the value of \((D^2 - d^2)(D^2 + d^2) \)

(1) Make similar measurements and calculation for a corresponding location at the other end of the tank.

(2) Use the smaller result obtained, from the foregoing, in making calculations prescribed in paragraph (b) of this section.

§ 179.500–5 Material.

(a) Tanks shall be made from open-hearth or electric steel of uniform quality. Material shall be free from seams, cracks, laminations, or other defects injurious to finished tank. If not free from such defects, the surface may be machined or ground to eliminate these defects. Forgings and seamless tubing for bodies of tanks shall be stamped with heat numbers.

(b) Steel (see Note 1) must conform to the following requirements as to chemical composition:

<table>
<thead>
<tr>
<th>Designation</th>
<th>Class I (percent)</th>
<th>Class II (percent)</th>
<th>Class III (percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon, maximum</td>
<td>0.50</td>
<td>0.50</td>
<td>0.53</td>
</tr>
<tr>
<td>Manganese, maximum</td>
<td>1.65</td>
<td>1.65</td>
<td>1.85</td>
</tr>
<tr>
<td>Phosphorus, maximum</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Sulphur, maximum</td>
<td>0.06</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Silicon, maximum</td>
<td>0.35</td>
<td>0.30</td>
<td>0.37</td>
</tr>
<tr>
<td>Molybdenum, maximum</td>
<td>0.25</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>Chromium, maximum</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>Sum of manganese and carbon not over</td>
<td>2.10</td>
<td>2.10</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Alternate steel containing other alloying elements may be used if approved.

(1) For instructions as to the obtaining and checking of chemical analysis, see §179.500–18(b)(3).

(2) [Reserved]

(a) Each necked-down tank shall be uniformly heat treated. Heat treatment shall consist of annealing or normalizing and tempering for Class I, Class II and Class III steel or oil quenching and tempering for Class III steel. Tempering temperatures shall not be less than 1000 °F. Heat treatment of alternate steels shall be approved. All scale shall be removed from outside of tank to an extent sufficient to allow proper inspection.

(b) To check uniformity of heat treatment, Brinnel hardness tests shall be made at 18 inch intervals on the entire longitudinal axis. The hardness shall not vary more than 35 points in the length of the tank. No hardness tests need be taken within 12 inches from point of head to shell tangency.