may amend its request by submitting an additional Letter of Intent. Such additional Letters of Intent will be treated as amendments filed by U.S. space station applicants for purposes of determining the order in which the Letters of Intent will be considered relative to other pending applications.

(f) A non-U.S.-licensed satellite operator that has been permitted to serve the United States pursuant to a Letter of Intent or Petition for Declaratory Ruling, may modify its U.S. operations under the procedures set forth in §25.117(d). In addition, a non-U.S.-licensed satellite operator that has been permitted to serve the United States pursuant to a Petition for Declaratory Ruling, may modify its U.S. operations under the procedures set forth in §25.118(e).

(g) A non-U.S.-licensed satellite operator that has been permitted to serve the United States pursuant to a Petition for Declaratory Ruling, must notify the Commission if it plans to transfer control or assign its license to another party, so that the Commission can afford interested parties an opportunity to comment on whether the proposed transaction affects any of the considerations we made when we allowed the satellite operator to enter the U.S. market. If the transferee or assignee is not licensed by or seeking a license from a country that is a member of the World Trade Organization for services covered under the World Trade Organization Basic Telecommunications Agreement, the non-U.S.-licensed satellite operator will be required to make the showing described in paragraph (a) of this section.

§25.138 Blanket Licensing provisions of GSO FSS Earth Stations in the 18.3-18.8 GHz (space-to-Earth), 19.7-20.2 GHz (space-to-Earth), 28.35-28.6 GHz (Earth-to-space), and 29.25-30.0 GHz (Earth-to-space) bands.

(a) All applications for a blanket earth station license in the GSO FSS in the 18.3-18.8 GHz, 19.7-20.2 GHz, 28.35-28.6 GHz, and 29.25-30.0 GHz bands that meet the following requirements shall be routinely processed:

18.5–25log(θ)–10log(N) dBW/40kHz for 2.0° ≤ θ ≤ 7°
18.5–25log(θ)–10log(N) dBW/40kHz for 2.0° ≤ θ ≤ 7°
21.5–25log(θ)–10log(N) dBW/40kHz for 7° ≤ θ ≤ 9.23°
21.5–25log(θ)–10log(N) dBW/40kHz for 7° ≤ θ ≤ 9.23°
-10.5–10log(N) dBW/40kHz for 9.23° ≤ θ ≤ 48°
-10.5–10log(N) dBW/40kHz for 9.23° ≤ θ ≤ 48°
-7.5–10log(N) dBW/40kHz for 48° < θ ≤ 180°
-7.5–10log(N) dBW/40kHz for 48° < θ ≤ 180°

Where:

θ is the angle in degrees from the axis of the main lobe; for systems where more than one earth station is expected to transmit simultaneously in the same bandwidth, e.g., CDMA systems.

N is the likely maximum number of simultaneously transmitting co-frequency earth stations in the receive beam of the satellite; N=1 for TDMA and FDMA systems.

(2) GSO FSS earth station antenna off-axis EIRP spectral density for co-polarized signals shall not exceed the following values, for all directions other than within ±3° of the GSO arc, under clear sky conditions:

21.5–25log(θ)–10log(N) dBW/40kHz for 3.5° ≤ θ ≤ 7°
21.5–25log(θ)–10log(N) dBW/40kHz for 3.5° ≤ θ ≤ 7°
0.37–10log(N) dBW/40kHz for 7° ≤ θ ≤ 9.23°
0.37–10log(N) dBW/40kHz for 7° ≤ θ ≤ 9.23°
24.5–25log(θ)–10log(N) dBW/40kHz for 9.23° ≤ θ ≤ 48°
24.5–25log(θ)–10log(N) dBW/40kHz for 9.23° ≤ θ ≤ 48°
-7.5–10log(N) dBW/40kHz for 48° < θ ≤ 180°
-7.5–10log(N) dBW/40kHz for 48° < θ ≤ 180°
Where:

θ: is the angle in degrees from the axis of the main lobe; for systems where more than one earth station is expected to transmit simultaneously in the same bandwidth, e.g., CDMA systems.

N: is the likely maximum number of simultaneously transmitting co-frequency earth stations in the receive beam of the satellite; $N=1$ for TDMA and FDMA systems.

(3) The values given in paragraphs (a) (1) and (2) of this section may be exceeded by $3 \, \text{dB}$, for values of $\theta > 10^\circ$, provided that the total angular range over which this occurs does not exceed 20° when measured along both sides of the GSO arc.

(4) GSO FSS earth station antenna off-axis EIRP spectral density for cross-polarized signals shall not exceed the following values, in all directions relative to the GSO arc, under clear sky conditions:

| $8.5 - 25 \log(\theta) - 10 \log(N)$ | dBW/40 kHz | For $2.0^\circ < \theta \leq 7.0^\circ$ |
| $-12.63 - 10 \log(N)$ | dBW/40 kHz | For $7.0^\circ < \theta \leq 9.23^\circ$ |

where θ is the angle in degrees from the axis of the main lobe. For systems where more than one earth station is expected to transmit simultaneously in the same bandwidth, e.g., CDMA systems, N is the likely maximum number of simultaneously transmitting co-frequency earth stations in the receive beam of the satellite; $N=1$ for TDMA and FDMA systems.

(5) For earth stations employing uplink power control, the values in paragraphs (a) (1), (2), and (4) of this section may be exceeded by up to $20 \, \text{dB}$ under conditions of uplink fading due to precipitation. The amount of such increase in excess of the actual amount of monitored excess attenuation over clear sky propagation conditions shall not exceed $1.5 \, \text{dB}$ or 15% of the actual amount of monitored excess attenuation in dB, whichever is larger, with a confidence level of 90 percent except over transient periods accounting for no more than 0.5% of the time during which the excess is no more than 4.0 dB.

(6) Power flux-density (PFD) at the Earth’s surface produced by emissions from a space station for all conditions, including clear sky, and for all methods of modulation shall not exceed a level of $-118 \, \text{dBW/m}^2/\text{MHz}$, in addition to the limits specified in §25.208 (d).

(b) Each applicant for earth station license(s) that proposes levels in excess of those defined in paragraph (a) of this section shall submit link budget analyses of the operations proposed along with a detailed written explanation of how each uplink and each transmitted satellite carrier density figure is derived. Applicants shall also submit a narrative summary which must indicate whether there are margin shortfalls in any of the current baseline services as a result of the addition of the applicant’s higher power service, and if so, how the applicant intends to resolve those margin short falls. Applicants shall certify that all potentially affected parties (i.e., those GSO FSS satellite networks that are 2, 4, and 6 degrees apart) acknowledge and do not object to the use of the applicant’s higher power densities.

(c) Licensees authorized pursuant to paragraph (b) of this section shall bear the burden of coordinating with any future applicants or licensees whose proposed compliant operations at 6 degrees or smaller orbital spacing, as defined by paragraph (a) of this section, is potentially or actually adversely affected by the operation of the non-compliant licensee. If no good faith agreement can be reached, however, the non-compliant licensee shall reduce its earth station and space station power density levels to be compliant with those specified in paragraph (a) of this section.

(d) The applicant shall provide for each earth station antenna type, a series of radiation patterns measured on a production antenna performed on a calibrated antenna range and, as a minimum, shall be made at the bottom, middle, and top frequencies of the 30 GHz band. The radiation patterns are:

(1) Co-polarized patterns for each of two orthogonal senses of polarizations
§ 25.139 NGSO FSS coordination and information sharing between MVDDS licensees in the 12.2 GHz to 12.7 GHz band.

(a) NGSO FSS licensees shall maintain a subscriber database in a format that can be readily shared with MVDDS licensees for the purpose of determining compliance with the MVDDS transmitting antenna spacing requirement relating to qualifying existing NGSO FSS subscriber receivers set forth in §101.129 of this chapter. This information shall not be used for purposes other than set forth in §101.129 of this chapter. Only sufficient information to determine compliance with §101.129 of this chapter is required.

(b) Within ten business days of receiving notification of the location of a proposed MVDDS transmitting antenna, the NGSO FSS licensee shall provide sufficient information from the database to enable the MVDDS licensee to determine whether the proposed MVDDS transmitting site meets the minimum spacing requirement.

(c) If the location of the proposed MVDDS transmitting antenna site does not meet the separation requirements of §101.129 of this chapter, then the NGSO FSS licensee shall also indicate to the MVDDS licensee within the same ten day period specified in paragraph (b) of this section whether the proposed MVDDS transmitting site is acceptable at the proposed location.

(d) Nothing in this section shall preclude NGSO FSS and MVDDS licensees from entering into an agreement to accept MVDDS transmitting antenna locations that are shorter-spaced from existing NGSO FSS subscriber receivers than the distance set forth in §101.129 of this chapter.

SPACE STATIONS

§ 25.140 Qualifications of fixed-satellite space station licensees.

(a) New fixed-satellites shall comply with the requirements established in Report and Order, CC Docket No. 81–704 (available at address in §0.445 of this chapter.) Applications must also meet the requirements in paragraphs (b)