this case, there must be a neutral overcurrent relay and alarm system that is set to function at a current value not more than the neutral rating.

(2) Equalizer buses. For each three-wire generator, the circuit breaker must protect against a short circuit on the equalizer bus.

(j) Circuit breaker reclosing. Generator circuit breakers must not automatically close after tripping.

§ 111.12–13 Propulsion generator protection.
For general requirements, see §111.35–1 of this chapter.

Subpart 111.15—Storage Batteries and Battery Chargers: Construction and Installation

§ 111.15–1 General.
Each battery must meet the requirements of this subpart.

§ 111.15–2 Battery construction.
(a) A battery cell, when inclined at 40 degrees from the vertical, must not spill electrolyte.

(b) Each fully charged lead-acid battery must have a specific gravity that meets section 22 of IEEE 45–2002 (incorporated by reference; see 46 CFR 110.10–1).

(c) Batteries must not evolve hydrogen at a rate exceeding that of a similar size lead-acid battery under similar charging condition.

(d) Batteries must be constructed to take into account the environmental conditions of a marine installation, including temperature, vibration, and shock.

§ 111.15–3 Battery categories.
(a) A battery installation is classified as one of three types, based upon power output of the battery charger, as follows:

1. Large. A large battery installation is one connected to a battery charger that has an output of more than 2 kw computed from the highest possible charging current and the rated voltage of the battery installation.

2. Moderate. A moderate battery installation is one connected to a battery charger that has an output of between 0.2 kw and 2 kw computed from the highest possible charging current and the rated voltage of the battery installation.

3. Small. A small battery installation is one connected to a battery charger that has an output of less than 0.2 kw computed from the highest possible charging current and the rated voltage of the battery installation.

(b) Batteries that generate less hydrogen under normal charging and discharging conditions than an equivalent category of lead-acid batteries (e.g., sealed batteries) may have their battery category reduced to an equivalent category of lead-acid batteries.

§ 111.15–5 Battery installation.
(a) Large batteries. Each large battery installation must be in a room that is only for batteries or a box on deck. Installed electrical equipment must meet the hazardous location requirements in subpart 111.105 of this part.

(b) Moderate batteries. Each moderate battery installation must be in a battery room, in a box on deck, or in a box or locker in another space such as an engineroom, storeroom, or similar space, except if a moderate battery installation is in a ventilated compartment such as the engineroom and is protected from falling objects, a box or locker is not required. A moderate battery installation must not be in a sleeping space. An engine cranking battery for one or more engines must be as close as possible to the engine or engines.

(c) Small batteries. Small size battery installations must not be located in poorly-ventilated spaces, such as closets, or in living spaces, such as state-rooms.

(d) Battery trays. Each battery tray must be chocked with wood strips or
§ 111.15–10 Ventilation.

(a) General. Each room, locker, and box for storage batteries must be arranged or ventilated to prevent accumulation of flammable gas.

(b) Power ventilation. If power ventilation is required, the following must be met:

(1) The power ventilation system must be separate from ventilation systems for other spaces.

(2) Electric motors must be outside the duct and compartment and:

(i) Have an explosion-proof motor for a Class I, Division 1, Group B location; or

(ii) Be at least 10 ft. (3 m) from the exhaust end of the duct.

(3) Each blower must have a non-sparking fan.

(4) The power ventilation system must be interlocked with the battery charger so that the battery cannot be charged without ventilation.

(c) Large battery installations. Each battery room for large battery installations must have a power exhaust ventilation system and have openings for intake air near the floor that allow the passage of the quantity of air that must be expelled. The quantity of the air expelled must be at least:

\[q = 3.89(i)(n) \]

where: \(q \) = quantity of expelled air in cubic feet per hour.

\(i \) = Maximum charging current during gas formation, or one-fourth of the maximum obtainable charging current of the charging facility, whichever is greater.

\(n \) = Number of cells.

(d) Moderate and small battery installations. Each battery room or battery locker for moderate or small battery installations must have louvers near the bottom of the room or locker for air, and must be ventilated by:

(1) Ventilation that meets paragraph (c) of this section;

(2) An exhaust duct:

(i) That ends in a mechanically ventilated space or in the weather;

(ii) That extends from the top of the room or locker to at least 3 ft. (1 m) above the top of the room or locker;

(iii) That is at an angle of 45 degrees or less from the vertical; and

(iv) That has no appliances, such as flame arresters, that impede free passage of air or gas mixtures; or

(3) A duct from the top of the room or locker to an exhaust ventilation duct.

(e) Deck boxes. Except for a deck box for a small battery installation, each deck box must have a duct from the top of the box to at least 4 ft. (1.2 m) above the box ending in a gooseneck or mushroom head that prevents entrance of water. Holes for air must be on at least two parallel sides of each box.

(f) Weathertight. Each deck box must be weathertight.

(g) Boxes for small battery installations. Each box for a small battery installation must have openings near the top