(2) Method 5 shall be used to determine the particulate matter concentration \((c_s) \) and volumetric flow rate \((Q_{sd}) \) of the effluent gas. The sampling time and sample volume for each run shall be at least 60 minutes and 1.50 dscm (53 dscf).

(3) Direct measurement using product weigh scales, or the result of computations using a material balance, shall be used to determine the rate \((P) \) of the ammonium sulfate production. If production rate is determined by material balance, the following equations shall be used:

(i) For synthetic and coke oven by-product ammonium sulfate plants:

\[
P=ABCK^{1/4}
\]

where:

- \(A \): Sulfuric acid flow rate to the reactor/crystallizer averaged over the time-period taken to conduct the run, liter/min.
- \(B \): Acid density (a function of acid strength and temperature), g/cc.
- \(C \): Acid strength, decimal fraction.
- \(K^{1/4} \): Conversion factor, \(0.0808 \) (Mg-min-cc)/(g-hr-liter) \(\approx 0.091 \) (ton-min-cc)/(g-hr-liter).

(ii) For caprolactam by-product ammonium sulfate plants:

\[
P=DEFK''
\]

where:

- \(D \): Total combined feed stream flow rate to the ammonium crystallizer before the point where any recycle streams enter the stream averaged over the time-period taken to conduct the test run, liter/min.
- \(E \): Density of the process stream solution, g/liter.
- \(F \): Percent mass of ammonium sulfate in the process solution, decimal fraction.
- \(K'' \): Conversion factor, \(6.0\times10^{-3} \) (Mg-min)/(g-hr) \(\approx 6.614\times10^{-5} \) (ton-min)/(g-hr).

(4) Method 9 and the procedures in §60.11 shall be used to determine the opacity.

§60.430 Applicability and designation of affected facility.

(a) Except as provided in paragraph (b) of this section, the affected facility to which the provisions of this subpart apply is each publication rotogravure printing press.

(b) The provisions of this subpart do not apply to proof presses.

(c) Any facility under paragraph (a) of this section that commences construction, modification, or reconstruction after October 28, 1980 is subject to the requirements of this subpart.

§60.431 Definitions and notations.

(a) All terms used in this subpart that are not defined below have the meaning given to them in the Act and in subpart A of this part.

Automatic temperature compensator means a device that continuously senses the temperature of fluid flowing through a metering device and automatically adjusts the registration of the measured volume to the corrected equivalent volume at a base temperature.

Base temperature means an arbitrary reference temperature for determining liquid densities or adjusting the measured volume of a liquid quantity.

Density means the mass of a unit volume of liquid, expressed as grams per cubic centimeter, kilograms per liter, or pounds per gallon, at a specified temperature.

Gravure cylinder means a printing cylinder with an intaglio image consisting of minute cells or indentations specially engraved or etched into the cylinder’s surface to hold ink when continuously revolved through a fountain of ink.

Performance averaging period means 30 calendar days, one calendar month, or four consecutive weeks as specified in sections of this subpart.

Proof press means any device used only to check the quality of the image formation of newly engraved or etched gravure cylinders and prints only non-saleable items.

Publication rotogravure printing press means any number of rotogravure printing units capable of printing simultaneously on the same continuous web or substrate and includes any associated device for continuously cutting
and folding the printed web, where the following saleable paper products are printed:

- Catalogues, including mail order and premium.
- Direct mail advertisements, including circulars, letters, pamphlets, cards, and printed envelopes.
- Display advertisements, including general posters, outdoor advertisements, car cards, window posters; counter and floor displays; point-of-sale, and other printed display material.
- Magazines.
- Miscellaneous advertisements, including brochures, pamphlets, catalogue sheets, circular folders, announcements, package inserts, book jackets, market circulars, magazine inserts, and shopping news.
- Newspapers, magazine and comic supplements for newspapers, and preprinted newspaper inserts, including hi-fi and spectacolor rolls and sections.
- Periodicals, and
- Telephone and other directories, including business reference services.

Raw ink means all purchased ink.

Related coatings means all non-ink purchased liquids and liquid-solid mixtures containing VOC solvent, usually referred to as extenders or varnishes, that are used at publication rotogravure printing presses.

Rotogravure printing unit means any device designed to print one color ink on one side of a continuous web or substrate using a gravure cylinder.

Solvent-borne ink systems means ink and related coating mixtures whose volatile portion consists of a mixture of VOC solvent and more than five weight percent water, as applied to the gravure cylinder.

Waterborne ink systems means ink and related coating mixtures whose volatile portion consists of a mixture of VOC solvent and more than five weight percent water, as applied to the gravure cylinder.

(b) Symbols used in this subpart are defined as follows:

- \(D_{wi} \) meaning the density of each quantity of VOC solvent (i) added to the ink for dilution at the subject facility (or facilities), at the coating temperature when the volume of coating used is measured.
- \(D_{co} \) meaning the density of each color of raw ink and each related coating (i) used at the subject facility (or facilities), at the coating temperature when the volume of coating used is measured.
- \(D_{wo} \) meaning the density of each VOC solvent (i) used as a cleaning agent at the subject facility (or facilities), at the solvent temperature when the volume of cleaning solvent used is measured.
- \(D_{wo} \) meaning the density of each quantity of water (i) added at the subject facility (or facilities) for dilution of waterborne ink systems at the water temperature when the volume of dilution water used is measured.
- \(D_{w} \) meaning the density of each quantity of VOC solvent and miscellaneous solvent-borne waste inks and waste VOC solvents (i) recovered from the subject facility (or facilities), at the solvent temperature when the volume of solvent recovered is measured.
- \(D_{co} \) meaning the density of the VOC solvent contained in each raw ink and related coating (i) used at the subject facility (or facilities), at the coating temperature when the volume of coating used is measured.
- \(D_{w} \) meaning the density of the water contained in each waterborne raw ink and related coating (i) used at the subject facility (or facilities), at the coating temperature when the volume of coating used is measured.
- \(L_{wi} \) meaning the measured liquid volume of each color of raw ink and each related coating (i) used at the facility of a corresponding VOC content, \(V_{co} \) or \(W_{co} \), with a VOC density, \(D_{co} \), and a coating density, \(D_{co} \).
- \(L_{w} \) meaning the measured liquid volume of each VOC solvent (i) with corresponding density, \(D_{w} \), added to dilute the ink used at the subject facility (or facilities)
- \(M_{wi} \) meaning the mass, determined by direct weighing, of each color of raw ink and each related coating (i) used at the subject facility (or facilities).
- \(M_{w} \) meaning the mass, determined by direct weighing, of VOC solvent added to dilute the ink used at the subject facility (or facilities) during one performance averaging period.
§ 60.432 Standard for volatile organic compounds.

During the period of the performance test required to be conducted by §60.8 and after the date required for completion of the test, no owner or operator subject to the provisions of this subpart shall cause to be discharged into the atmosphere from any affected facility VOC equal to more than 16 percent of the total mass of VOC solvent and water used at that facility during any one performance averaging period. The water used includes only that water contained in the waterborne raw inks and related coatings and the water added for dilution with waterborne ink systems.

§ 60.433 Performance test and compliance provisions.

(a) The owner or operator of any affected facility (or facilities) shall conduct performance tests in accordance with §60.8, under the following conditions:

(1) The performance averaging period for each test is 30 consecutive calendar days and not an average of three separate runs as prescribed under §60.8(f).

(2) Except as provided under paragraphs (f) and (g) of this section, if affected facilities routinely share the same raw ink storage/handling system with existing facilities, then temporary measurement procedures for segregating the raw inks, related coatings, VOC solvent, and water used at the affected facilities must be employed during the test. For this case, an overall emission percentage for the combined facilities as well as for only the affected facilities must be calculated during the test.

(3) For the purpose of measuring bulk storage tank quantities of each color of raw ink and each related coating used, the owner or operator of any affected facility shall install, calibrate, maintain, and continuously operate during the test one or more:

(i) Non-resettable totalizer metering device(s) for indicating the cumulative

Environmental Protection Agency

\[M_a = \text{the mass, determined by direct weighing, of VOC solvent used as a cleaning agent at the subject facility (or facilities) during one performance averaging period.} \]

\[M_f = \text{the total mass of VOC solvent contained in the raw inks and related coatings used at the subject facility (or facilities) during one performance averaging period.} \]

\[M_r = \text{the total mass of VOC solvent recovered from the subject facility (or facilities) during one performance averaging period.} \]

\[M_s = \text{the total mass of VOC solvent used at the subject facility (or facilities) during one performance averaging period.} \]

\[M_w = \text{the total mass of water used at the subject facility (or facilities) during one performance averaging period.} \]

\[V_a = \text{the liquid VOC content, expressed as a volume fraction of VOC volume per total volume of coating, of each color of raw ink and related coating (i) used at the subject facility (or facilities).} \]

\[V_{sw} = \text{the water content, expressed as a volume fraction of water volume per total volume of coating, of each color of waterborne raw ink and related coating (i) used at the subject facility (or facilities).} \]

\[W_a = \text{the VOC content, expressed as a weight fraction of mass of VOC per total mass of coating, of each color of raw ink and related coating (i) used at the subject facility (or facilities).} \]

\[W_{sw} = \text{the water content, expressed as a weight fraction of mass of water per total mass of coating, of each color of waterborne raw ink and related coating (i) used at the subject facility (or facilities).} \]

(b) The following subscripts are used in this subpart with the above symbols to denote the applicable facility:

\[a = \text{affected facility.} \]

\[b = \text{both affected and existing facilities controlled in common by the same air pollution control equipment.} \]

\[e = \text{existing facility.} \]

\[f = \text{all affected and existing facilities located within the same plant boundary.} \]