5.4 Transition Period. A transition period is allowed for phasing in the operation of newly required PAMS programs (due generally to reclassification of an area into serious, severe, or extreme nonattainment for ozone). Following the date of redesignation or reclassification of any existing O_3 nonattainment area to serious, severe, or extreme, or the designation of a new area and classification to serious, severe, or extreme O_3 nonattainment, a State is allowed 1 year to develop plans for its PAMS implementation strategy. Subsequently, a minimum of one Type 2 site must be operating by the first month of the following approved PAMS season. Operation of the remaining site(s) must, at a minimum, be phased in at the rate of one site per year during subsequent years as outlined in the approved PAMS network description provided by the State.

6. REFERENCES

APPENDIX E TO PART 58—PROBE AND MONITORING PATH SITING CRITERIA FOR AMBIENT AIR QUALITY MONITORING

1. INTRODUCTION

(a) This appendix contains specific location criteria applicable to SLAMS, NCore, and PAMS ambient air quality monitoring probes, inlets, and optical paths after the general location has been selected based on the monitoring objectives and spatial scale of representation discussed in appendix D to this part. Adherence to these siting criteria is necessary to ensure the uniform collection of compatible and comparable air quality data.

(b) The probe and monitoring path siting criteria discussed in this appendix must be followed to the maximum extent possible. It is recognized that there may be situations where some deviation from the siting criteria may be necessary. In any such case, the reasons must be thoroughly documented in a
Environmental Protection Agency

Pt. 58, App. E

written request for a waiver that describes how and why the proposed siting deviates from the criteria. This documentation should help to avoid later questions about the validity of the resulting monitoring data. Conditions under which the EPA would consider an application for waiver from these siting criteria are discussed in section 10 of this appendix.

(c) The pollutant-specific probe and monitoring path siting criteria generally apply to all spatial scales except where noted otherwise. Specific siting criteria that are phrased with a “must” are defined as requirements and exceptions must be approved through the waiver provisions. However, siting criteria that are phrased with a “should” are defined as goals to meet for consistency but are not requirements.

2. Horizontal and Vertical Placement

The probe or at least 80 percent of the monitoring path must be located between 2 and 15 meters above ground level for all O₃ and SO₂ monitoring sites, and for neighborhood or larger spatial scale Pb, PM₁₀, PM_{2.5}, NO₂, and CO sites. Middle scale PM₁₀, PM_{2.5} sites are required to have sampler inlets between 2 and 7 meters above ground level. Microscale Pb, PM₁₀, PM_{2.5}, and PM₁₀ sites are required to have sampler inlets between 2 and 7 meters above ground level. The inlet probes for microscale carbon monoxide monitors that are being used to measure concentrations near roadways must be between 2 and 7 meters above ground level. Those inlet probes for microscale carbon monoxide monitors measuring concentrations near roadways in downtown areas or urban street canyons must be between 2.5 and 3.5 meters above ground level. The probe or at least 90 percent of the monitoring path must be at least 1 meter vertically or horizontally away from any supporting structure, walls, parapets, penthouses, etc., and away from dusty or dirty areas. If the probe or a significant portion of the monitoring path is located near the side of a building or wall, then it should be located on the windward side of the building relative to the prevailing wind direction during the season of highest concentration potential for the pollutant being measured.

3. Spacing From Minor Sources

(a) It is important to understand the monitoring objective for a particular location in order to interpret this particular requirement. Local minor sources of a primary pollutant, such as SO₂, lead, or particles, can cause high concentrations of that particular pollutant at a monitoring site. If the objective for that monitoring site is to investigate these local primary pollutant emissions, then the site is likely to be properly located nearby. This type of monitoring site would in all likelihood be a microscale type of monitoring site. If a monitoring site is to be used to determine air quality over a much larger area, such as a neighborhood or city, a monitoring agency should avoid placing a monitor probe, path, or inlet near local, minor sources. The plume from the local minor sources should not be allowed to inappropriately impact the air quality data collected at a site. Particulate matter monitoring sites should not be located in an unpaved area unless there is vegetative ground cover year round, so that the impact of wind blown dusts will be kept to a minimum.

(b) Similarly, local sources of nitric oxide (NO) and ozone-reactive hydrocarbons can have a scavenging effect causing unrepresentatively low concentrations of O₃ in the vicinity of probes and monitoring paths for O₃. To minimize these potential interferences, the probe or at least 90 percent of the monitoring path must be at least 2.5 meters away from furnace or incineration flues or other minor sources of SO₂ or NO. The separation distance should take into account the heights of the flues, type of waste or fuel burned, and the sulfur content of the fuel.

4. Spacing From Obstructions

(a) Buildings and other obstacles may possibly scavenge SO₂, O₃, or NO₂, and can act to restrict airflow for any pollutant. To avoid this interference, the probe, inlet, or at least 90 percent of the monitoring path must have unrestricted airflow and be located away from obstacles. The distance from the obstacle to the probe, inlet, or monitoring path must be at least twice the height that the obstacle protrudes above the probe, inlet, or monitoring path. An exception to this requirement can be made for measurements taken in street canyons or at source-oriented sites where buildings and other structures are unavoidable.

(b) Generally, a probe or monitoring path located near or along a vertical wall is undesirable because air moving along the wall may be subject to possible removal mechanisms. A probe, inlet, or monitoring path must have unrestricted airflow in an arc of at least 180 degrees. This arc must include the predominant wind direction for the season of greatest pollutant concentration potential. For particle sampling, a minimum of 2 meters of separation from walls, parapets, and structures is required for rooftop site placement.

(c) Special consideration must be given to the use of open path analyzers due to their inherent potential sensitivity to certain types of interferences, or optical obstructions. A monitoring path must be clear of all trees, brush, buildings, plumes, dust, or
other optical obstructions, including potential obstructions that may move due to wind, human activity, growth of vegetation, etc. Temporary optical obstructions, such as rain, particles, fog, or snow, should be considered when siting an open path analyzer. Any of these temporary obstructions that are of sufficient density to obscure the light beam will affect the ability of the open path analyzer to continuously measure pollutant concentrations. Transient, but significant obscuration of especially longer measurement paths could occur as a result of certain meteorological conditions (e.g., heavy fog, rain, snow) and/or aerosol levels that are of a sufficient density to prevent the open path analyzer’s light transmission. If certain compensating measures are not otherwise implemented at the onset of monitoring (e.g., shorter path lengths, higher light source intensity), data recovery during periods of greatest primary pollutant potential could be compromised. For instance, if heavy fog or high particulate levels are coincident with periods of projected NAAQS-threatenning pollutant potential, the representativeness of the resulting data record in reflecting maximum pollutant concentrations may be substantially impaired despite the fact that the site may otherwise exhibit an acceptable, even exceedingly high overall valid data capture rate.

(d) For near-road NO$_2$ monitoring stations, the monitor probe shall have an unobstructed air flow, where no obstacles exist at or above the height of the monitor probe, between the monitor probe and the outside nearest edge of the traffic lanes of the target road segment.

5. SPACING FROM TREES

(a) Trees can provide surfaces for SO$_2$, O$_3$, or NO$_2$ adsorption or reactions, and surfaces for particle deposition. Trees can also act as obstructions in cases where they are located between the air pollutant sources or source areas and the monitoring site, and where the trees are of a sufficient height and leaf canopy density to interfere with the normal airflow around the probe, inlet, or monitoring path. To reduce this possible interference/obstruction, the probe, inlet, or at least 90 percent of the monitoring path must be at least 10 meters or further from the drip line of trees.

(b) The scavenging effect of trees is greater for O$_3$ than for other criteria pollutants. Monitoring agencies must take steps to consider the impact of trees on ozone monitoring sites and take steps to avoid this problem.

(c) For microscale sites of any air pollutant, no trees or shrubs should be located between the probe and the source under investigation, such as a roadway or a stationary source.
Environmental Protection Agency

TABLE E–2 TO APPENDIX E OF PART 58—MINIMUM SEPARATION DISTANCE BETWEEN ROADWAYS AND PROBES OR MONITORING PATHS FOR MONITORING NEIGHBORHOOD SCALE CARBON MONOXIDE

<table>
<thead>
<tr>
<th>Roadway average daily traffic, vehicles per day</th>
<th>Minimum distance (^1) (meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤10,000</td>
<td>10</td>
</tr>
<tr>
<td>15,000</td>
<td>25</td>
</tr>
<tr>
<td>20,000</td>
<td>45</td>
</tr>
<tr>
<td>30,000</td>
<td>80</td>
</tr>
<tr>
<td>40,000</td>
<td>115</td>
</tr>
<tr>
<td>50,000</td>
<td>135</td>
</tr>
<tr>
<td>≥60,000</td>
<td>150</td>
</tr>
</tbody>
</table>

\(^1\) Distance from the edge of the nearest traffic lane. The distance for intermediate traffic counts should be interpolated from the table values based on the actual traffic count.

6.3 Spacing for Particulate Matter (PM\(_{2.5}\), PM\(_{10}\), Pb) Inlets. (a) Since emissions associated with the operation of motor vehicles contribute to urban area particulate matter ambient levels, spacing from roadway criteria are necessary for ensuring national consistency in PM sampler siting.

(b) The intent is to locate localized hotspot sites in areas of highest concentrations whether it be from mobile or multiple stationary sources. If the area is primarily affected by mobile sources and the maximum concentration area(s) is judged to be a traffic corridor or street canyon location, then the monitors should be located near roadways with the highest traffic volume and at separation distances most likely to produce the highest concentrations. For the microscale traffic corridor site, the location must be between 5 and 15 meters from the major roadway. For the microscale street canyon site, the location must be between 2 and 10 meters from the roadway. For the middle scale site, a range of acceptable distances from the roadway is shown in figure E–1 of this appendix. This figure also includes separation distances between a roadway and neighborhood or larger scale sites by default. Any site, 2 to 15 meters high, and further back than the middle scale requirements will generally be neighborhood, urban or regional scale. For example, according to Figure E–1 of this appendix, if a PM sampler is primarily influenced by roadway emissions and that sampler is set back 10 meters from a 30,000 ADT (average daily traffic) road, the site should be classified as microscale, if the sampler height is between 2 and 7 meters. If the sampler height is between 7 and 15 meters, the site should be classified as middle scale. If the sample is 20 meters from the same road, it will be classified as middle scale; if 40 meters, neighborhood scale; and if 110 meters, an urban scale.

6.4 Spacing for Nitrogen Dioxide (NO\(_2\)) Probes and Monitoring Paths.

(a) In siting near-road NO\(_2\) monitors as required in paragraph 4.3.2 of appendix D of this part, the monitor probe shall be as near as practicable to the outside nearest edge of the traffic lanes of the target road segment; but shall not be located at a distance greater than 50 meters, in the horizontal, from the outside nearest edge of the traffic lanes of the target road segment.

(b) In siting NO\(_2\) monitors for neighborhood and larger scale monitoring, it is important to minimize near-road influences. Table E–1 of this appendix provides the required minimum separation distances between a roadway and a probe or, where applicable, at least 90 percent of a monitoring path for various ranges of daily roadway traffic. A sampling site having a point analyzer probe located closer to a roadway than allowed by the Table E–1 requirements should be classified as microscale or middle scale rather than neighborhood or urban scale. If an open path analyzer is used at a site, the monitoring path(s) must not cross over a roadway with an average daily traffic count of 10,000 vehicles per day or more. For those situations where a monitoring path crosses a roadway with fewer than 10,000 vehicles per day, monitoring agencies must consider the entire segment of the monitoring path in the area of potential atmospheric interference from automobile emissions. Therefore, this calculation must include the length of the monitoring path over the roadway and minimum separation distance, as determined form the Table E–1 of this appendix. The sum of these distances must not be greater than 10 percent of the total monitoring path length.
7. CUMULATIVE INTERFERENCES ON A MONITORING PATH

(This paragraph applies only to open path analyzers.) The cumulative length or portion of a monitoring path that is affected by minor sources, trees, or roadways must not exceed 10 percent of the total monitoring path length.

8. MAXIMUM MONITORING PATH LENGTH

(This paragraph applies only to open path analyzers.) The monitoring path length must not exceed 1 kilometer for analyzers in neighborhood, urban, or regional scale. For middle scale monitoring sites, the monitoring path length must not exceed 300 meters. In areas subject to frequent periods of dust, fog, rain, or snow, consideration should be given to a shortened monitoring path length to minimize loss of monitoring data due to these temporary optical obstructions. For certain ambient air monitoring scenarios using open path analyzers, shorter path lengths may be needed in order to ensure that the monitoring site meets the objectives and spatial scales defined in appendix D to this part. The Regional Administrator may require shorter path lengths, as needed on an individual basis, to ensure that the SLAMS sites meet the appendix D requirements. Likewise, the Administrator may specify the maximum path length used at NCore monitoring sites.

9. PROBE MATERIAL AND POLLUTANT SAMPLE RESIDENCE TIME

(a) For the reactive gases, SO\(_2\), NO\(_2\), and O\(_3\), special probe material must be used for point analyzers. Studies have been conducted to determine the suitability of materials such as polypropylene, polyethylene, polyvinyl chloride, Tygon\(^\text{®}\), aluminum, brass, stainless steel, copper, Pyrex\(^\text{®}\) glass and Teflon\(^\text{®}\) for use as intake sampling lines. Of the above materials, only Pyrex\(^\text{®}\) glass and Teflon\(^\text{®}\) have been found to be acceptable for use as intake sampling lines for all the reactive gaseous pollutants. Furthermore, the EPA has specified borosilicate glass or FEP Teflon\(^\text{®}\) as the only acceptable probe materials for delivering test atmospheres in the determination of reference or equivalent methods. Therefore, borosilicate glass, FEP Teflon\(^\text{®}\) or their equivalent must be the only material in the sampling train (from inlet probe to the back of the analyzer) that can be in contact with the ambient air sample for existing and new SLAMS.

(b) For volatile organic compound (VOC) monitoring at PAMS, FEP Teflon\(^\text{®}\) is unacceptable as the probe material because of VOC adsorption and desorption reactions on the FEP Teflon\(^\text{®}\). Borosilicate glass, stainless steel, or its equivalent are the acceptable probe materials for VOC and carbonyl sampling. Care must be taken to ensure that the sample residence time is kept to 20 seconds or less.
Environmental Protection Agency
Pt. 58, App. E
(c) No matter how nonreactive the sampling probe material is initially, after a period of use reactive particulate matter is deposited on the probe walls. Therefore, the time it takes the gas to transfer from the probe inlet to the sampling device is also critical. Ozone in the presence of nitrogen oxide (NO) will show significant losses even in the most inert probe material when the residence time exceeds 20 seconds. Other studies\(^2^7,2^8\) indicate that a 10 second or less residence time is easily achievable. Therefore, sampling probes for reactive gas monitors at NCORE and at NO\(_2\) sites must have a sample residence time less than 20 seconds.

Most sampling probes or monitors can be located so that they meet the requirements of this appendix. New sites with rare exceptions, can be located within the limits of this appendix. However, some existing sites may not meet these requirements and still produce useful data for some purposes. The EPA will consider a written request from the State agency to waive one or more siting criteria for some monitoring sites providing that the State can adequately demonstrate the need (purpose) for monitoring or establishing a monitoring site at that location.

10.1 For establishing a new site, a waiver may be granted only if both of the following criteria are met:

10.1.1 The site can be demonstrated to be as representative of the monitoring area as it would be if the siting criteria were being met.

10.1.2 The monitor or probe cannot reasonably be located so as to meet the siting criteria because of physical constraints (e.g., inability to locate the required type of site the necessary distance from roadways or obstructions).

10.2 However, for an existing site, a waiver may be granted if either of the criteria in sections 10.1.1 and 10.1.2 of this appendix are met.

10.3 Cost benefits, historical trends, and other factors may be used to add support to the criteria in sections 10.1.1 and 10.1.2 of this appendix, however, they in themselves, will not be acceptable reasons for granting a waiver. Written requests for waivers must be submitted to the Regional Administrator.

11. Summary

Table E-4 of this appendix presents a summary of the general requirements for probe and monitoring path siting criteria with respect to distances and heights. It is apparent from Table E-4 that different elevation distances above the ground are shown for the various pollutants. The discussion in this appendix for each of the pollutants describes reasons for elevating the monitor, probe, or monitoring path. The differences in the specified range of heights are based on the vertical concentration gradients. For CO and near-road NO\(_2\) monitors, the gradients in the vertical direction are very large for the microscale, so a small range of heights are used. The upper limit of 15 meters is specified for the consistency between pollutants and to allow the use of a single manifold or monitoring path for monitoring more than one pollutant.

Table E–4 of Appendix E to Part 58—Summary of Probe and Monitoring Path Siting Criteria

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Scale (maximum monitoring path length, meters)</th>
<th>Height from ground to probe, inlet or 90% of monitoring path (m)</th>
<th>Horizontal and vertical distance from supporting structures to probe, inlet or 90% of monitoring path (meters)</th>
<th>Distance from roadways to probe, inlet or monitoring path (meters)</th>
<th>Distance from roadways to probe, inlet or monitoring path (meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO(_2)</td>
<td>Middle (300 m) Neighborhood Urban, and Regional (1 km)</td>
<td>2–15</td>
<td>> 1</td>
<td>> 10</td>
<td>N/A.</td>
</tr>
<tr>
<td>CO</td>
<td>Micro (down-town or street canyon sites), micro (near-road sites), middle (300 m) and Neighborhood (1 km)</td>
<td>2.5–3.5, 2–7, 2–15</td>
<td>> 1</td>
<td>> 10</td>
<td>2–10 for downtown areas or street canyon microscale; 50 for near-road microscale; see Table E–2 of this appendix for middle and neighborhood scales.</td>
</tr>
</tbody>
</table>
TABLE E–4 OF APPENDIX E TO PART 58—SUMMARY OF PROBE AND MONITORING PATH SITING CRITERIA—Continued

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Scale (maximum monitoring path length, meters)</th>
<th>Height from ground to probe, inlet or 90% of monitoring path</th>
<th>Horizontal and vertical distance from supporting structures to probe, inlet or 90% of monitoring path</th>
<th>Distance from trees to probe, inlet or 90% of monitoring path</th>
<th>Distance from roadways to probe, inlet or monitoring path</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₃, NO₂</td>
<td>Middle (300 m) of Neighborhood, Urban, and Regional (1 km).</td>
<td>2–15</td>
<td>> 1</td>
<td>> 10</td>
<td>See Table E–1 of this appendix for all scales.</td>
</tr>
<tr>
<td>NOₓ</td>
<td>Micro (Near-road [50–300 m]; Middle [300 m]) of Neighborhood, Urban, and Regional (1 km).</td>
<td>2–7 (micro); 2–15 (all other scales)</td>
<td>> 1</td>
<td>> 10</td>
<td>50 meters for near-road microscale; See Table E–1 of this appendix for all other scales.</td>
</tr>
<tr>
<td>PM, Pb, O₃, Pb</td>
<td>Micro: Middle, Neighborhood, Urban, and Regional.</td>
<td>2–7 (micro); 2–15 (middle PM₁₀); 2–15 (all other scales)</td>
<td>> 2 (all scales, horizontal distance only)</td>
<td>> 10 (all scales)</td>
<td>2–10 (micro); see Figure E–1 of this appendix for all other scales.</td>
</tr>
</tbody>
</table>

N/A—Not applicable.

1 Monitoring path for open path analyzers is applicable only to middle or neighborhood scale CO monitoring, middle, neighborhood, urban, and regional scale NOₓ monitoring, and all applicable scales for monitoring SO₂, O₃, and O₃ precursors.

2 When probe is located on a rooftop, this separation distance is in reference to walls, parapets, or small buildings located on roof.

3 Should be > 20 meters from the drip-line of tree(s) and must be 10 meters from the drip-line when the tree(s) act as an obstruction.

4 Distance from sampler, probe, or 90% of monitoring path to obstacle, such as a building, must be at least twice the height of the obstacle protrudes above the sampler, probe, or monitoring path. Sites not meeting this criterion may be classified as middle scale (see text).

5 Must have unrestricted airflow 270 degrees around the probe or sampler; 180 degrees if the probe is on the side of a building or a wall.

6 The probe, sampler, or monitoring path should be away from minor sources, such as furnace or incineration flues. The separation distance is dependent on the height of the minor source’s emission point (such as a flue), the type of fuel or waste burned, and the quality of the fuel (sulfur, ash, or lead content). This criterion is designed to avoid undue influences from minor sources.

7 For microscale CO monitoring sites in downtown areas or street canyons (not at near-road NOₓ monitoring sites), the probe must be > 10 meters from a street intersection and preferably at a midblock location.

8 Collocated monitors must be within 4 meters of each other and at least 2 meters apart for flow rates greater than 200 liters/min or at least 1 meter apart for samplers having flow rates less than 200 liters/min to preclude airflow interference.

12 REFERENCES

1. Bryan, R.J., R.J. Gordon, and H. Menck. Comparison of High Volume Air Filter Samples at Varying Distances from Los Angeles Freeway, University of Southern California, School of Medicine, Los Angeles, CA. Presented at 60th Annual Meeting of Air Pollution Control Association, Chicago, IL, June 24–28, 1973. APCA 73–158.

5. Harrison, P.R. Considerations for Siting Air Quality Monitors in Urban Areas. City of Chicago, Department of Environmental Control, Chicago, IL. (Presented at 60th Annual Meeting of Air Pollution Control Association, Chicago, IL, June 24–28, 1973. APCA 73–161.)

Environmental Protection Agency

Pt. 58, App. E

APPENDIX F TO PART 58 [RESERVED]

APPENDIX G TO PART 58—UNIFORM AIR QUALITY INDEX (AQI) AND DAILY REPORTING

GENERAL REQUIREMENTS

1. What is the AQI?

2. Why report the AQI?

3. Must I report the AQI?

4. What goes into my AQI report?

5. Is my AQI report for my MSA only?

6. How do I get my AQI report to the public?

7. How often must I report the AQI?

8. May I make exceptions to these reporting requirements?

CALCULATION

9. How Does the AQI Relate to Air Pollution Levels?

10. What Monitors Should I Use To Get the Pollutant Concentrations for Calculating the AQI?

11. Do I have to forecast the AQI?

12. How Do I Calculate the AQI?

BACKGROUND AND REFERENCE MATERIALS

13. What Additional Information Should I Know?

GENERAL REQUIREMENTS

1. What Is the AQI?

The AQI is a tool that simplifies reporting air quality to the general public. The AQI incorporates into a single index concentrations of 5 criteria pollutants: ozone (O₃), particulate matter (PM), carbon monoxide (CO), sulfur dioxide (SO₂), and nitrogen dioxide (NO₂).

The scale of the index is divided into general categories that are associated with health messages.

2. Why Report the AQI?

The AQI offers various advantages:

a. It is simple to create and understand.

b. It conveys the health implications of air quality.

c. It promotes uniform use throughout the country.

3. Must I Report the AQI?

You must report the AQI daily if yours is a metropolitan statistical area (MSA) with a population over 350,000.

4. What Goes Into My AQI Report?

i. Your AQI report must contain the following:

a. The reporting area(s) (the MSA or subdivision of the MSA).

b. The reporting period (the day for which the AQI is reported).

c. The critical pollutant (the pollutant with the highest index value).

d. The AQI (the highest index value).

e. The category descriptor and index value associated with the AQI and, if you choose to report in a color format, the associated color. Use only the following descriptors and colors for the six AQI categories:

<table>
<thead>
<tr>
<th>Table 1—AQI Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>For this AQI</td>
</tr>
<tr>
<td>0 to 50</td>
</tr>
<tr>
<td>51 to 100</td>
</tr>
<tr>
<td>101 to 150</td>
</tr>
<tr>
<td>151 to 200</td>
</tr>
<tr>
<td>201 to 300</td>
</tr>
<tr>
<td>301 and above</td>
</tr>
</tbody>
</table>

*Specific colors can be found in the most recent reporting guidance (Guideline for Public Reporting of Daily Air Quality—Air Quality Index (AQI)).

f. The pollutant specific sensitive groups for any reported index value greater than 100. Use the following sensitive groups for each pollutant:

<table>
<thead>
<tr>
<th>When this pollutant has an index value above 100</th>
<th>Report these sensitive groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone</td>
<td>Children and people with asthma are the groups most at risk.</td>
</tr>
<tr>
<td>PM₁₀₂₀</td>
<td>People with respiratory or heart disease, the elderly and children are the groups most at risk.</td>
</tr>
<tr>
<td>PM₁₀₀</td>
<td>People with respiratory disease are the group most at risk.</td>
</tr>
<tr>
<td>CO</td>
<td>People with heart disease are the group most at risk.</td>
</tr>
<tr>
<td>SO₂</td>
<td>People with asthma are the group most at risk.</td>
</tr>
<tr>
<td>NO₂</td>
<td>Children and people with respiratory disease are the groups most at risk.</td>
</tr>
</tbody>
</table>