(f) Repeat the procedures in §1065.590(f) through (i) to determine post-test mass of the sample media (e.g., filters).

(g) Subtract each buoyancy-corrected tare mass of the sample medium (e.g., filter) from its respective buoyancy-corrected mass. The result is the net PM mass, \(m_{PM} \). Use \(m_{PM} \) in emission calculations in §1065.650.

[73 FR 37323, June 30, 2008]

\section*{Subpart G—Calculations and Data Requirements}

\section*{§ 1065.601 Overview.}

(a) This subpart describes how to—

(1) Use the signals recorded before, during, and after an emission test to calculate brake-specific emissions of each measured exhaust constituent.

(2) Perform calculations for calibrations and performance checks.

(3) Determine statistical values.

(b) You may use data from multiple systems to calculate test results for a single emission test, consistent with good engineering judgment. You may also make multiple measurements from a single batch sample, such as multiple weighings of a PM filter or multiple readings from a bag sample. You may not use test results from multiple emission tests to report emissions. We allow weighted means where appropriate. You may discard statistical outliers, but you must report all results.

(c) You may use any of the following calculations instead of the calculations specified in this subpart G:

(1) Mass-based emission calculations prescribed by the International Organization for Standardization (ISO), according to ISO 8178, except the following:

(i) ISO 8178–1 Section 14.4, NO\(_X\) Correction for Humidity and Temperature. See §1065.670 for approved methods for humidity corrections.

(ii) ISO 8178–1 Section 15.1, Particulate Correction Factor for Humidity.

(2) Other calculations that you show are equivalent to within \(\pm 0.1\% \) of the brake-specific emission results determined using the calculations specified in this subpart G.

\section*{§ 1065.602 Statistics.}

(a) Overview. This section contains equations and example calculations for statistics that are specified in this part. In this section we use the letter “\(y \)” to denote a generic measured quantity, the superscript over-bar “\(\bar{y} \)” to denote an arithmetic mean, and the subscript “\(ref \)” to denote the reference quantity being measured.

(b) Arithmetic mean. Calculate an arithmetic mean, \(\bar{y} \), as follows:

\[
\bar{y} = \frac{\sum_{i=1}^{N} y_i}{N} \quad \text{Eq. 1065.602-1}
\]

Example:

\(N = 3 \)

\begin{align*}
\bar{y} &= \frac{10.60 + 11.91 + 11.09}{3} \\
&= 11.22
\end{align*}