§ 1037.525 40 CFR Ch. I (7–1–12 Edition)

and size). To support this request, we may require that you supply data demonstrating that your selected parameters/criteria will provide a sufficient level of detail to yield an accurate analysis, including comparison of key characteristics between your criteria/parameters and the criteria specified in paragraphs (e)(1) and (2) of this section (e.g., pressure profiles, drag build-up, and/or turbulent/laminar flow at key points on the front of the tractor and/or over the length of the tractor-trailer combination).

(f) Yaw sweep corrections. You may optionally apply this paragraph (f) for vehicles with aerodynamic features that are more effective at reducing wind-averaged drag than is predicted by zero-yaw drag. You may correct your zero-yaw drag area as follows if the ratio of the zero-yaw drag area divided by yaw sweep drag area for your vehicle is greater than 0.8065 (which represents the ratio expected for a typical aerodynamic Class 8 high-roof sleeper cab tractor):

1. Determine the zero-yaw drag area and the yaw sweep drag area for your vehicle using the same alternate method as specified in this subpart. Measure drag area for 0°, −6°, and +6°. Use the arithmetic mean of the −6° and +6° drag areas as the ±6° drag area.
2. Calculate your yaw sweep correction factor (CF_{ys}) using the following equation:

\[CF_{ys} = \frac{(\pm 6^\circ \text{ Drag Area}) \times 0.8065}{(\text{Zero Yaw Drag Area})} \]

(3) Calculate your corrected drag area for determining the aerodynamic bin by multiplying the measured zero-yaw drag area by CF_{ys}. The correction factor may be applied to drag areas measured using other procedures. For example, we would apply CF_{ys} to drag areas measured using the recommended coastdown method. If you use an alternative method, you would also need to apply an alternative correction ($F_{alt-aero}$) and calculate the final drag area using the following equation:

\[C_{D_A} = F_{alt-aero} \cdot CF_{ys} \cdot (C_{D_A})_{zero-alt} \]

(4) You may ask us to apply CF_{ys} to similar vehicles incorporating the same design features.

(5) As an alternative, you may choose to calculate the wind-averaged drag area according to SAE J1252 (incorporated by reference in §1037.810) and substitute this value into the equation in paragraph (f)(2) of this section for the ±6° yaw-averaged drag area.

§ 1037.525 Special procedures for testing hybrid vehicles with power take-off.

This section describes the procedure for quantifying the reduction in greenhouse gas emissions as a result of running power take-off (PTO) devices with a hybrid powertrain. The procedures are written to test the PTO so that all the energy is produced with the engine. The full test for the hybrid vehicle is from a fully charged renewable energy storage system (RESS) to a depleted RESS and then back to a fully charged RESS. These procedures may be used for whole vehicles or with a post-transmission hybrid system. When testing just the post-transmission hybrid system, you must include all hardware for the PTO system. You may ask us to modify the provisions of this section to allow testing hybrid vehicles other than electric-battery hybrids, consistent with good engineering judgment.

(a) Select two vehicles for testing as follows:

1. Select a vehicle with a hybrid powertrain to represent the vehicle family. If your vehicle family includes more than one vehicle model, use good engineering judgment to select the vehicle type with the maximum number of PTO circuits that has the smallest potential reduction in greenhouse gas emissions.
2. Select an equivalent conventional vehicle as specified in §1037.615.
(b) Measure PTO emissions from the fully warmed-up conventional vehicle as follows:
(1) Without adding any additional restrictions, instrument the vehicle with pressure transducers at the outlet of the hydraulic pump for each circuit.
(2) Operate the PTO system with no load for at least 15 seconds. Measure the pressure and record the average value over the last 10 seconds (p_{min}). Apply maximum operator demand to the PTO system until the pressure relief valve opens and pressure stabilizes; measure the pressure and record the average value over the last 10 seconds (p_{max}).
(3) Denormalize the PTO duty cycle in appendix II of this part using the following equation:
$$p_{refi} = N_P i \cdot (p_{max} - p_{min}) + p_{min}$$
Where:
- p_{refi} = the reference pressure at each point i in the PTO cycle.
- $N_P i$ = the normalized pressure at each point i in the PTO cycle.
- p_{max} = the maximum pressure measured in paragraph (b)(2) of this section.
- p_{min} = the minimum pressure measured in paragraph (b)(2) of this section.
(4) If the PTO system has two circuits, repeat paragraph (b)(2) and (3) of this section for the second PTO circuit.
(5) Install a system to control pressures in the PTO system during the cycle.
(6) Start the engine.
(7) Operate the vehicle over one or both of the denormalized PTO duty cycles, as applicable. Collect CO$_2$ emissions during operation over each duty cycle.
(8) Use the provisions of 40 CFR part 1066 to collect and measure emissions. Calculate emission rates in grams per test without rounding.
(9) For each test, validate the pressure in each circuit with the pressure specified from the cycle according to 40 CFR 1065.514. Measured pressures must meet the specifications in the following table for a valid test:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute value of intercept, $</td>
<td>a</td>
</tr>
<tr>
<td>Absolute value of intercept, $</td>
<td>a</td>
</tr>
<tr>
<td>Standard error of estimate, SEE</td>
<td>$\leq 10%$ of maximum mapped pressure.</td>
</tr>
<tr>
<td>Coefficient of determination, r^2</td>
<td>≥ 0.970.</td>
</tr>
</tbody>
</table>

(10) Continue testing over the three vehicle drive cycles, as otherwise required by this part.
(11) Calculate combined cycle-weighted emissions of the four cycles as specified in paragraph (d) of this section.
(c) Measure PTO emissions from the fully warmed-up hybrid vehicle as follows:
(1) Perform the steps in paragraphs (b)(1) through (5) of this section.
(2) Prepare the vehicle for testing by operating it as needed to stabilize the battery at a full state of charge. For electric hybrid vehicles, we recommend running back-to-back PTO tests until engine operation is initiated to charge the battery. The battery should be fully charged once engine operation stops. The ignition should remain in the “on” position.
(3) Turn the vehicle and PTO system off while the sampling system is being prepared.
(4) Turn the vehicle and PTO system on such that the PTO system is functional, whether it draws power from the engine or a battery.
(5) Operate the vehicle over the PTO cycle(s) without turning the vehicle off, until the engine starts and then shuts down. The test cycle is completed once the engine shuts down. Measure emissions as described in paragraphs (b)(2) and (3) of this section. Use good engineering judgment to minimize the variability in testing between the two types of vehicles.
(6) Refer to paragraph (b)(9) of this section for cycle validation.
(7) Continue testing over the three vehicle drive cycles, as otherwise required by this part.
§ 1037.550 Special procedures for testing post-transmission hybrid systems.

This section describes the procedure for simulating a chassis test with a post-transmission hybrid system for A to B testing. The hardware that must be included in these tests is the engine, the transmission, the hybrid electric motor, the power electronics between the hybrid electric motor and the RESS, and the RESS. You may ask us to modify the provisions of this section to allow testing non-electric hybrid vehicles, consistent with good engineering judgment.

(a) Set up the engine according to 40 CFR 1065.110 to account for work inputs and outputs and accessory work.

(b) Collect CO\textsubscript{2} emissions while operating the system over the test cycles specified in §1037.510.

(c) Collect and measure emissions as described in 40 CFR part 1066. Calculate emission rates in grams per ton-mile without rounding. Determine values for A, B, C, and M for the vehicle being simulated as specified in 40 CFR part 1066. If you will apply an improvement factor or test results to multiple vehicle configurations, use values of A, B, C, M, k\textsubscript{d}, and r that represent the vehicle configuration with the smallest potential reduction in greenhouse gas emissions.

Where:
\[t_{\text{test}} = \frac{\sum_{i=1}^{N} (NP_{\text{circuit	ext{-}1},i} \cdot NP_{\text{circuit	ext{-}2},i}) \cdot \Delta t}{t_{\text{cycle}}} \]

\[t_{\text{test}} = \frac{\sum_{i=1}^{N} (NP_{\text{circuit	ext{-}1},i} \cdot NP_{\text{circuit	ext{-}2},i}) \cdot \Delta t}{t_{\text{cycle}}} \]

\[t_{\text{test}} = \frac{\sum_{i=1}^{N} (NP_{\text{circuit	ext{-}1},i} \cdot NP_{\text{circuit	ext{-}2},i}) \cdot \Delta t}{t_{\text{cycle}}} \]

\[t_{\text{test}} = \frac{\sum_{i=1}^{N} (NP_{\text{circuit	ext{-}1},i} \cdot NP_{\text{circuit	ext{-}2},i}) \cdot \Delta t}{t_{\text{cycle}}} \]