§ 98.73 Calculating GHG emissions.

You must calculate and report the annual process CO\textsubscript{2} emissions from each ammonia manufacturing process unit using the procedures in either paragraph (a) or (b) of this section.

(a) Calculate and report under this subpart the process CO\textsubscript{2} emissions by operating and maintaining CEMS according to the Tier 4 Calculation Methodology specified in §98.33(a)(4) and all associated requirements for Tier 4 in subpart C of this part (General Stationary Fuel Combustion Sources).

(b) Calculate and report under this subpart process CO\textsubscript{2} emissions using the procedures in paragraphs (b)(1) through (b)(5) of this section for gaseous feedstock, liquid feedstock, or solid feedstock, as applicable.

(1) **Gaseous feedstock.** You must calculate, from each ammonia manufacturing unit, the CO\textsubscript{2} process emissions from gaseous feedstock according to Equation G–1 of this section:

\[
CO_{2,G,k} = \left(\sum_{n=1}^{12} \frac{44}{12} * Fdstk_{n,k} * CC_n * \frac{MW}{MVC} \right) * 0.001 \quad \text{(Eq. G-1)}
\]

Where:
- \(CO_{2,G,k}\) = Annual CO\textsubscript{2} emissions arising from gaseous feedstock consumption (metric tons).
- \(Fdstk_{n,k}\) = Volume of the gaseous feedstock used in month \(n\) (scf of feedstock).
- \(CC_n\) = Carbon content of the gaseous feedstock, for month \(n\) (kg C per kg of feedstock), determined according to §98.74(c).
- \(MW\) = Molecular weight of the gaseous feedstock (kg/kg-mole).
- \(MVC\) = Molar volume conversion factor (849.5 scf per kg-mole at standard conditions).

44/12 = Ratio of molecular weights, CO\textsubscript{2} to carbon.
0.001 = Conversion factor from kg to metric tons.
\(k\) = Processing unit.
\(n\) = Number of month.

(2) **Liquid feedstock.** You must calculate, from each ammonia manufacturing unit, the CO\textsubscript{2} process emissions from liquid feedstock according to Equation G–2 of this section:

\[
CO_{2,L,k} = \left(\sum_{n=1}^{12} \frac{44}{12} * Fdstk_{n,k} * CC_n \right) * 0.001 \quad \text{(Eq. G-2)}
\]

Where:
- \(CO_{2,L,k}\) = Annual CO\textsubscript{2} emissions arising from liquid feedstock consumption (metric tons).
- \(Fdstk_{n,k}\) = Volume of the liquid feedstock used in month \(n\) (gallons of feedstock).
- \(CC_n\) = Carbon content of the liquid feedstock, for month \(n\) (kg C per gallon of feedstock) determined according to §98.74(c).

44/12 = Ratio of molecular weights, CO\textsubscript{2} to carbon.
0.001 = Conversion factor from kg to metric tons.
\(k\) = Processing unit.
\(n\) = Number of month.

(3) **Solid feedstock.** You must calculate, from each ammonia manufacturing unit, the CO\textsubscript{2} process emissions from solid feedstock according to Equation G–3 of this section:
Where:

\[\text{CO}_2_{S,k} = \text{Annual CO}_2 \text{ emissions arising from solid feedstock consumption (metric tons).} \]

\[\text{Fdstk}_n = \text{Mass of the solid feedstock used in month } n \text{ (kg of feedstock).} \]

\[\text{CC}_n = \text{Carbon content of the solid feedstock, for month } n \text{ (kg C per kg of feedstock), determined according to 98.74(c).} \]

\[\frac{44}{12} = \text{Ratio of molecular weights, CO}_2 \text{ to carbon.} \]

\[0.001 = \text{Conversion factor from kg to metric tons.} \]

\[k = \text{Processing unit.} \]

\[n = \text{Number of month.} \]

(4) You must calculate the annual process CO\(_2\) emissions from each ammonia processing unit \(k\) at your facility summing emissions, as applicable from Equation G–1, G–2, and G–3 of this section using Equation G–4.

\[\text{E}_{\text{CO}_2} = \text{CO}_2_{G} + \text{CO}_2_{S} + \text{CO}_2_{L} \quad \text{(Eq. G-4)} \]

Where:

\[\text{E}_{\text{CO}_2} = \text{Annual CO}_2 \text{ emissions from each ammonia processing unit } k \text{ (metric tons).} \]

\(k = \text{Processing unit.} \)

(5) You must determine the combined CO\(_2\) emissions from all ammonia processing units at your facility using Equation G–3 of this section.

\[\text{CO}_2 = \sum_{k=1}^{n} \text{E}_{\text{CO}_2,k} \quad \text{(Eq. G-5)} \]

Where:

\[\text{CO}_2 = \text{Annual combined CO}_2 \text{ emissions from all ammonia processing units (metric tons) (CO}_2 \text{ process emissions reported under this subpart may include CO}_2 \text{ that is later consumed on site for urea production, and therefore is not released to the ambient air from the ammonia manufacturing process unit(s)).} \]

\[\text{E}_{\text{CO}_2,k} = \text{Annual CO}_2 \text{ emissions from each ammonia processing unit (metric tons).} \]

\(k = \text{Processing unit.} \)

\(n = \text{Total number of ammonia processing units.} \)

(c) If GHG emissions from an ammonia manufacturing unit are vented through the same stack as any combustion unit or process equipment that reports CO\(_2\) emissions using a CEMS that complies with the Tier 4 Calculation Methodology in subpart C of this part (General Stationary Fuel Combustion Sources), then the calculation methodology in paragraph (b) of this section shall not be used to calculate process emissions. The owner or operator shall report under this subpart the combined stack emissions according to the Tier 4 Calculation Methodology in §98.33(a)(4) and all associated requirements for Tier 4 in subpart C of this part.

§ 98.74 Monitoring and QA/QC requirements.

(a) You must continuously measure the quantity of gaseous or liquid feedstock consumed using a flow meter. The quantity of solid feedstock consumed can be obtained from company records and aggregated on a monthly basis.

(b) You must document the procedures used to ensure the accuracy of the estimates of feedstock consumption.

(c) You must determine monthly carbon contents and the average molecular weight of each feedstock consumed from reports by your supplier. As an alternative to using supplier information on carbon contents, you can also collect a sample of each feedstock on a monthly basis and analyze the carbon content and molecular weight of the fuel using any of the following methods listed in paragraphs (c)(1) through (c)(8) of this section, as applicable.