Subpart NN—Suppliers of Natural Gas and Natural Gas Liquids

§98.400 Definition of the source category.

This supplier category consists of natural gas liquids fractionators and local natural gas distribution companies.

(a) Natural gas liquids fractionators are installations that fractionate natural gas liquids (NGLs) into their constituent liquid products (ethane, propane, normal butane, isobutane or pentanes plus) for supply to downstream facilities.

(b) Local Distribution Companies (LDCs) are companies that own or operate distribution pipelines, not interstate pipelines or intrastate pipelines, that physically deliver natural gas to end users and that are regulated as separate operating companies by State public utility commissions or that operate as independent municipally-owned distribution systems.

(c) This supply category does not consist of the following facilities:

(1) Field gathering and boosting stations.

(2) Natural gas processing plants that separate NGLs from natural gas and produce bulk or y-grade NGLs but do not fractionate these NGLs into their constituent products.

(3) Facilities that meet the definition of refineries and report under subpart MM of this part.

(4) Facilities that meet the definition of petrochemical plants and report under subpart X of this part.

§98.401 Reporting threshold.

Any supplier of natural gas and natural gas liquids that meets the requirements of §98.2(a)(4) must report GHG emissions.

§98.402 GHGs to report.

(a) NGL fractionators must report the CO₂ emissions that would result from the complete combustion or oxidation of the annual quantity of ethane, propane, normal butane, isobutane, and pentanes plus that is produced and sold or delivered to others.

(b) LDCs must report the CO₂ emissions that would result from the complete combustion or oxidation of the annual volumes of natural gas provided to end-users on their distribution systems.

§98.403 Calculating GHG emissions.

(a) LDCs and fractionators shall, for each individual product reported under this part, calculate the estimated CO₂ emissions that would result from the complete combustion or oxidation of the products supplied using either of Calculation Methodology 1 or 2 of this subpart:

(1) Calculation Methodology 1. NGL fractionators shall estimate CO₂ emissions that would result from the complete combustion or oxidation of the product(s) supplied using Equation NN–1 of this section. LDCs shall estimate CO₂ emissions that would result from the complete combustion or oxidation of the product received at the city gate using Equation NN–1. For each product, use the default value for higher heating value and CO₂ emission factor in Table NN–1 of this subpart. Alternatively, for each product, a reporter-specific higher heating value and CO₂ emission factor may be used, in place of one or both defaults provided they are developed using methods outlined in §98.404. For each product, you must use the same volume unit throughout the equation.
CO$_{2i} = 1 \times 10^{-3} \sum \text{Fuel}_h \times \text{HHV}_h \times \text{EF}_h \quad (\text{Eq. NN-1})$

Where:
- CO$_{2i}$ = Annual CO$_2$ mass emissions that would result from the combustion or oxidation of each product “h” for redelivery to all recipients (metric tons).
- Fuel$_h$ = Total annual volume of product “h” supplied (volume per year, in thousand standard cubic feet (Mscf) for natural gas and bbl for NGLs).
- HHV$_h$ = Higher heating value of product “h” supplied (MMBtu/Mscf or MMBtu/bbl).
- EF$_h$ = CO$_2$ emission factor of product “h” (kg CO$_2$/MMBtu).
- 1×10^{-3} = Conversion factor from kilograms to metric tons (MT/kg).

(2) Calculation Methodology 2. NGL fractionators shall estimate CO$_2$ emissions that would result from the complete combustion or oxidation of the product(s) supplied using Equation NN–2 of this section. LDCs shall estimate CO$_2$ emissions that would result from the complete combustion or oxidation of the product received at the city gate using Equation NN–2. For each product, use the default CO$_2$ emission factor found in Table NN–2 of this subpart. Alternatively, for each product, a reporter-specific CO$_2$ emission factor may be used in place of the default factor, provided it is developed using methods outlined in §98.404. For each product, you must use the same volume unit throughout the equation.

CO$_{2i} = \sum \text{Fuel}_h \times \text{EF}_h \quad (\text{Eq. NN-2})$

Where:
- CO$_{2i}$ = Annual CO$_2$ mass emissions that would result from the combustion or oxidation of each product “h” (metric tons)
- Fuel$_h$ = Total annual volume of product “h” supplied (bbl or Mscf per year)
- EF$_h$ = Fuel-specific CO$_2$ emission factor (MT CO$_2$/bbl, or MT CO$_2$/Mscf)

(b) Each LDC shall follow the procedures below.

(1) For natural gas that is received for redelivery to downstream gas transmission pipelines and other local distribution companies, use Equation NN–3 of this section and the default values for the CO$_2$ emission factors found in Table NN–2 of this subpart.

CO$_{2j} = \text{Fuel} \times \text{EF} \quad (\text{Eq. NN-3})$

Where:
- CO$_{2j}$ = Annual CO$_2$ mass emissions that would result from the combustion or oxidation of natural gas for redelivery to transmission pipelines or other LDCs (metric tons).
- Fuel = Total annual volume of natural gas supplied (Mscf per year).
- EF = Fuel-specific CO$_2$ emission factor (MT CO$_2$/Mscf).

2(i) For natural gas delivered to each meter registering a supply equal to or greater than 460,000 Mscf per year, use Equation NN–4 of this section and the default values for the CO$_2$ emission factors found in Table NN–2 of this subpart. Alternatively, reporter-specific CO$_2$ emission factors may be used, provided they are developed using methods outlined in §98.404.

CO$_{2k} = \text{Fuel} \times \text{EF} \quad (\text{Eq. NN-4})$

Where:
- CO$_{2k}$ = Annual CO$_2$ mass emissions that would result from the combustion or oxidation of natural gas received by end-users that receive a supply equal to or greater than 460,000 Mscf per year (metric tons).
- Fuel = Total annual volume of natural gas supplied (Mscf per year).
- EF = Fuel-specific CO$_2$ emission factor (MT CO$_2$/Mscf).

(3) For natural gas received by the LDC at the city gate that is injected into on-system storage, and/or liquefied and stored, use Equation NN–5 of this section and the default value for the CO$_2$ emission factors found in Table NN–2 of this subpart. Alternatively, a reporter-specific CO$_2$ emission factor may be used, provided it is developed using methods outlined in §98.404.
(c) Each NGL fractionator shall follow the following procedures.

(1) For fractionated NGLs received by the reporter from other NGL fractionators, you shall use Equation NN-7 of this section and the default values for the CO\(_2\) emission factors found in Table NN-2 of this subpart.

\[
\text{CO}_2 = \sum \text{CO}_{2i} - \sum \text{CO}_{2j} - \sum \text{CO}_{2k} - \sum \text{CO}_{2l} \quad \text{(Eq. NN-6)}
\]

Where:
\(\text{CO}_2\) = Annual CO\(_2\) mass emissions that would result from the combustion or oxidation of each fractionated NGL product “\(g\)” received from other fractionators (metric tons).
\(\text{Fuel}_g\) = Total annual volume of each NGL product “\(g\)” received (bbls).
\(\text{EF}_g\) = Fuel-specific CO\(_2\) emission factor of NGL product “\(g\)” (MT CO\(_2\)/bbl).

(ii) Alternatively, reporter-specific CO\(_2\) emission factors may be used, provided they are developed using methods outlined in §98.404.

\[
\text{CO}_{2m} = \sum_{g} \text{Fuel}_g \times \text{EF}_g \quad \text{(Eq. NN-7)}
\]

Where:
\(\text{CO}_{2m}\) = Annual CO\(_2\) mass emissions that would result from the combustion or oxidation of each fractionated NGL product “\(g\)” received from other fractionators (metric tons).
\(\text{Fuel}_g\) = Total annual volume of each NGL product “\(g\)” received (bbls).
\(\text{EF}_g\) = Fuel-specific CO\(_2\) emission factor of NGL product “\(g\)” (MT CO\(_2\)/bbl).

(2) Calculate the total CO\(_2\) equivalent emissions that would result from the combustion or oxidation of fractionated NGLs supplied less the quantity received by other fractionators using Equation NN-8 of this section.

\[
\text{CO}_2 = \text{CO}_{2i} - \text{CO}_{2m} \quad \text{(Eq. NN-8)}
\]

Where:
\(\text{CO}_2\) = Annual CO\(_2\) mass emissions that would result from the combustion or oxidation of
§ 98.404 Monitoring and QA/QC requirements.

(a) Determination of quantity.

(1) NGL fractionators and LDCs shall determine the quantity of NGLs and natural gas using methods in common use in the industry for billing purposes as audited under existing Sarbanes Oxley regulations.

(i) Where an appropriate standard method published by a consensus-based standards organization exists, such a method shall be used. Consensus-based standards organizations include, but are not limited to, the following: ASTM International, the American National Standards Institute (ANSI), the American Gas Association (AGA), the American Society of Mechanical Engineers (ASME), the American Petroleum Institute (API), and the North American Energy Standards Board (NAESB).

(ii) Where no appropriate standard method developed by a consensus-based standards organization exists, industry standard practices shall be followed.

(2) NGL fractionators and LDCs shall base the minimum frequency of the product quantity measurements, to be summed to the annual quantity reported, on the reporter’s standard practices for commercial operations.

(i) For NGL fractionators the minimum frequency of measurements shall be the measurements taken at custody transfers summed to the annual reportable volume.

(ii) For natural gas the minimum frequency of measurement shall be based on the LDC’s standard measurement schedules used for billing purposes and summed to the annual reportable volume.

(3) NGL fractionators shall use measurement for NGLs at custody transfer meters or at such meters that are used to determine the NGL product slate delivered from the fractionation facility.

(4) If a NGL fractionator supplies a product not listed in Table NN–1 of this subpart that is a mixture or blend of two or more products listed in Tables NN–1 and NN–2 of this subpart, the NGL fractionator shall report the quantities of the constituents of the mixtures or blends separately.

(5) For an LDC using Equation NN–1 or NN–2 of this subpart, the point(s) of measurement for the natural gas volume supplied shall be the LDC city gate meter(s).

(i) If the LDC makes its own quantity measurements according to established business practices, its own measurements shall be used.

(ii) If the LDC does not make its own quantity measurements according to established business practices, it shall use its delivering pipeline invoiced measurements for natural gas deliveries to the LDC city gate, used in determining daily system sendout.

(6) An LDC using Equation NN–3 of this subpart shall measure natural gas at the custody transfer meters.

(7) An LDC using Equation NN–4 of this subpart shall measure natural gas at the customer meters. The reporter shall consider the volume delivered through a single particular meter at a single particular location as the volume delivered to an individual end-user.

(8) An LDC using Equation NN–5 of this subpart shall measure natural gas as follows:

(i) Fuel \(_1\) shall be measured at the on-system storage injection meters and at the meters measuring natural gas to be liquefied.

(ii) Fuel \(_2\) shall be measured at the meters used for measuring on-system storage withdrawals and/or LNG vaporization injection. If Fuel \(_2\) is from a source other than storage, the appropriate meter shall be used to measure the quantity.

(9) An LDC shall measure all natural gas under the following standard industry temperature and pressure conditions: Cubic foot of gas at a temperature of 60 degrees Fahrenheit and at an...