expected flight conditions without requiring the pilot's attention, must be provided for faults that would prevent the system from providing the required pitching motion. - (d) Each system must be designed so that the artificial stall barrier can be quickly and positively disengaged by the pilots to prevent unwanted downward pitching of the airplane by a quick release (emergency) control that meets the requirements of §23.1329(b). - (e) A preflight check of the complete system must be established and the procedure for this check made available in the Airplane Flight Manual (AFM). Preflight checks that are critical to the safety of the airplane must be included in the limitations section of the AFM. - (f) For those airplanes whose design includes an autopilot system: - (1) A quick release (emergency) control installed in accordance with §23.1329(b) may be used to meet the requirements of paragraph (d), of this section, and - (2) The pitch servo for that system may be used to provide the stall downward pitching motion. - (g) In showing compliance with §23.1309, the system must be evaluated to determine the effect that any announced or unannounced failure may have on the continued safe flight and landing of the airplane or the ability of the crew to cope with any adverse conditions that may result from such failures. This evaluation must consider the hazards that would result from the airplane's flight characteristics if the system was not provided, and the hazard that may result from unwanted downward pitching motion, which could result from a failure at airspeeds above the selected stall speed. [Doc. No. 27806, 61 FR 5165, Feb. 9, 1996] ## §23.693 Joints. Control system joints (in push-pull systems) that are subject to angular motion, except those in ball and roller bearing systems, must have a special factor of safety of not less than 3.33 with respect to the ultimate bearing strength of the softest material used as a bearing. This factor may be reduced to 2.0 for joints in cable control sys- tems. For ball or roller bearings, the approved ratings may not be exceeded. ## §23.697 Wing flap controls. - (a) Each wing flap control must be designed so that, when the flap has been placed in any position upon which compliance with the performance requirements of this part is based, the flap will not move from that position unless the control is adjusted or is moved by the automatic operation of a flap load limiting device. - (b) The rate of movement of the flaps in response to the operation of the pilot's control or automatic device must give satisfactory flight and performance characteristics under steady or changing conditions of airspeed, engine power, and attitude. - (c) If compliance with §23.145(b)(3) necessitates wing flap retraction to positions that are not fully retracted, the wing flap control lever settings corresponding to those positions must be positively located such that a definite change of direction of movement of the lever is necessary to select settings beyond those settings. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23–49, 61 FR 5165, Feb. 9, 1996] ## § 23.699 Wing flap position indicator. There must be a wing flap position indicator for— - (a) Flap installations with only the retracted and fully extended position, unless— - (1) A direct operating mechanism provides a sense of "feel" and position (such as when a mechanical linkage is employed); or - (2) The flap position is readily determined without seriously detracting from other piloting duties under any flight condition, day or night; and - (b) Flap installation with intermediate flap positions if— - (1) Any flap position other than retracted or fully extended is used to show compliance with the performance requirements of this part; and - (2) The flap installation does not meet the requirements of paragraph (a)(1) of this section.