Federal Aviation Administration, DOT

§ 23.572

(5) * * *

(ii) The value of HIC is defined as—

\[
HIC = \left(t_2 - t_1 \right) \left[\frac{1}{(t_2 - t_1)} \int_{t_1}^{t_2} a(t) dt \right]^{2.5}_{Max}
\]

Where—

- \(t_1 \) is the initial integration time, expressed in seconds,
- \(t_2 \) is the final integration time, expressed in seconds, and
- \(a(t) \) is the total acceleration vs. time curve for the head strike expressed as a multiple of \(g \) (units of gravity).

* * * * *

Fatigue Evaluation

§ 23.571 Metallic pressurized cabin structures.

For normal, utility, and acrobatic category airplanes, the strength, detail design, and fabrication of the metallic structure of the pressure cabin must be evaluated under one of the following:

(a) A fatigue strength investigation in which the structure is shown by tests, or by analysis supported by test evidence, to be able to withstand the repeated loads of variable magnitude expected in service; or

(b) A fail-safe strength investigation, in which it is shown by analysis, tests, or both that catastrophic failure of the structure is not probable after fatigue failure, or obvious partial failure, of a principal structural element, and that the remaining structures are able to withstand a static ultimate load factor of 75 percent of the critical limit load factor at \(V_c \). These loads must be multiplied by a factor of 1.15 unless the dynamic effects of failure under static load are otherwise considered.

(c) The damage tolerance evaluation of §23.573(b).

§ 23.572 Metallic wing, empennage, and associated structures.

(a) For normal, utility, and acrobatic category airplanes, the strength, detail design, and fabrication of those parts of the airframe structure whose failure would be catastrophic must be evaluated under one of the following unless it is shown that the structure, operating stress level, materials and expected uses are comparable, from a fatigue standpoint, to a similar design that has had extensive satisfactory service experience:

(1) A fatigue strength investigation in which the structure is shown by tests, or by analysis supported by test evidence, to be able to withstand the repeated loads of variable magnitude expected in service; or

(2) A fail-safe strength investigation in which it is shown by analysis, tests, or both, that catastrophic failure of the structure is not probable after fatigue failure, or obvious partial failure, of a principal structural element, and that the remaining structure is able to withstand a static ultimate load factor of 75 percent of the critical limit load factor at \(V_c \). These loads must be multiplied by a factor of 1.15 unless the dynamic effects of failure under static load are otherwise considered.

Effective Date Note: By Amdt. 23–62, 76 FR 75756, Dec. 2, 2011, §23.571 was amended by adding a new paragraph (d), effective Jan. 31, 2012. For the convenience of the user, the added text is set forth as follows:

§ 23.571 Metallic pressurized cabin structures.

(d) If certification for operation above 41,000 feet is requested, a damage tolerance evaluation of the fuselage pressure boundary per §23.573(b) must be conducted.

§ 23.572 Metallic wing, empennage, and associated structures.

(d) If certification for operation above 41,000 feet is requested, a damage tolerance evaluation of the fuselage pressure boundary per §23.573(b) must be conducted.