§ 50.69  Risk-informed categorization and treatment of structures, systems and components for nuclear power reactors.

(a) Definitions.

Risk-Informed Safety Class (RISC)–1 structures, systems, and components (SSCs) means safety-related SSCs that perform safety significant functions.

Risk-Informed Safety Class (RISC)–2 structures, systems and components (SSCs) means nonsafety-related SSCs that perform safety significant functions.

Risk-Informed Safety Class (RISC)–3 structures, systems and components (SSCs) means safety-related SSCs that perform low safety significant functions.

Risk-Informed Safety Class (RISC)–4 structures, systems and components (SSCs) means nonsafety-related SSCs that perform low safety significant functions.

Safety significant function means a function whose degradation or loss could result in a significant adverse effect on defense-in-depth, safety margin, or risk.

(b) Applicability and scope of risk-informed treatment of SSCs and submittal/approval process. (1) A holder of a license to operate a light water reactor (LWR) nuclear power plant under this part; a holder of a renewed LWR license under part 54 of this chapter; an applicant for a construction permit or operating license under this part; or an applicant for a design approval, a combined license, or manufacturing license under part 52 of this chapter; may voluntarily comply with the requirements in this section as an alternative to compliance with the following requirements for RISC–3 and RISC–4 SSCs:

(i) 10 CFR parts 21.

(ii) The portion of 10 CFR 50.46a(b) that imposes requirements to conform to Appendix B to 10 CFR part 50.

(iii) 10 CFR 50.49.

(iv) 10 CFR 50.55(e).

(v) The inservice testing requirements in 10 CFR 50.55a(f); the inservice inspection, and repair and replacement (with the exception of fracture toughness), requirements for ASME Class 2 and Class 3 SSCs in 10 CFR 50.55a(g); and the electrical component quality and qualification requirements in Sections 4.3 and 4.4 of IEEE 279, and Sections 5.3 and 5.4 of IEEE 603–1991, as incorporated by reference in 10 CFR 50.55a(h).

(vi) 10 CFR 50.65, except for paragraph (a)(4).

(vii) 10 CFR 50.72.

(viii) 10 CFR 50.73.

(ix) Appendix B to 10 CFR part 50.

(x) The Type B and Type C leakage testing requirements in both Options A and B of Appendix J to 10 CFR part 50, for penetrations and valves meeting the following criteria:

(A) Containment penetrations that are either 1-inch nominal size or less, or continuously pressurized.

(B) Containment isolation valves that meet one or more of the following criteria:

(1) The valve is required to be open under accident conditions to prevent or mitigate core damage events;

(2) The valve is normally closed and in a physically closed, water-filled system;

(3) The valve is in a physically closed system whose piping pressure rating
exceeds the containment design pressure rating and is not connected to the reactor coolant pressure boundary; or

(4) The valve is 1-inch nominal size or less.

(xi) Appendix A to part 100, Sections VII(a)(1) and VII(a)(2), to the extent that these regulations require qualification testing and specific engineering methods to demonstrate that SSCs are designed to withstand the Safe Shutdown Earthquake and Operating Basis Earthquake.

(2) A licensee voluntarily choosing to implement this section shall submit an application for license amendment under §50.90 that contains the following information:

(i) A description of the process for categorization of RISC–1, RISC–2, RISC–3 and RISC–4 SSCs.

(ii) A description of the measures taken to assure that the quality and level of detail of the systematic processes that evaluate the plant for internal and external events during normal operation, low power, and shutdown (including the plant-specific probabilistic risk assessment (PRA), margins-type approaches, or other systematic evaluation techniques used to evaluate severe accident vulnerabilities) are adequate for the categorization of SSCs.

(iii) Results of the PRA review process conducted to meet §50.69(c)(1)(i).

(iv) A description of, and basis for acceptability of, the evaluations to be conducted to satisfy §50.69(c)(1)(iv). The evaluations must include the effects of common cause interaction susceptibility, and the potential impacts from known degradation mechanisms for both active and passive functions, and address internally and externally initiated events and plant operating modes (e.g., full power and shutdown conditions).

(3) The Commission will approve a licensee’s implementation of this section if it determines that the process for categorization of RISC–1, RISC–2, RISC–3, and RISC–4 SSCs satisfies the requirements of §50.69(c) by issuing a license amendment approving the licensee’s use of this section.

(4) An applicant choosing to implement this section shall include the information in §50.69(b)(2) as part of application. The Commission will approve an applicant’s implementation of this section if it determines that the process for categorization of RISC–1, RISC–2, RISC–3, and RISC–4 SSCs satisfies the requirements of §50.69(c).

(c) SSC Categorization Process. (1) SSCs must be categorized as RISC–1, RISC–2, RISC–3, or RISC–4 SSCs using a categorization process that determines if an SSC performs one or more safety significant functions and identifies those functions. The process must:

(i) Consider results and insights from the plant-specific PRA. This PRA must model severe accident scenarios resulting from internal initiating events occurring at full power operation. The PRA must be of sufficient quality and level of detail to support the categorization process, and must be subjected to a peer review process assessed against a standard or set of acceptance criteria that is endorsed by the NRC.

(ii) Determine SSC functional importance using an integrated, systematic process for addressing initiating events (internal and external), SSCs, and plant operating modes, including those not modeled in the plant-specific PRA. The functions to be identified and considered include design bases functions and functions credited for mitigation and prevention of severe accidents. All aspects of the integrated, systematic process used to characterize SSC importance must reasonably reflect the current plant configuration and operating practices, and applicable plant and industry operational experience.

(iii) Maintain defense-in-depth.

(iv) Include evaluations that provide reasonable confidence that for SSCs categorized as RISC–3, sufficient safety margins are maintained and that any potential increases in core damage frequency (CDF) and large early release frequency (LERF) resulting from changes in treatment permitted by implementation of §§50.69(b)(1) and (d)(2) are small.

(v) Be performed for entire systems and structures, not for selected components within a system or structure.

(2) The SSCs must be categorized by an Integrated Decision-Making Panel
(idp) staffed with expert, plant-knowledgeable members whose expertise includes, at a minimum, PRA, safety analysis, plant operation, design engineering, and system engineering.

(d) Alternative treatment requirements—

(1) RISC–1 and RISC–2 SSCs. The licensee or applicant shall ensure that RISC–1 and RISC–2 SSCs perform their functions consistent with the categorization process assumptions by evaluating treatment being applied to these SSCs to ensure that it supports the key assumptions in the categorization process that relate to their assumed performance.

(2) RISC–3 SSCs. The licensee or applicant shall ensure, with reasonable confidence, that RISC–3 SSCs remain capable of performing their safety-related functions under design basis conditions, including seismic conditions and environmental conditions and effects throughout their service life. The treatment of RISC–3 SSCs must be consistent with the categorization process. Inspection and testing, and corrective action shall be provided for RISC–3 SSCs.

(i) Inspection and testing. Periodic inspection and testing activities must be conducted to determine that RISC–3 SSCs will remain capable of performing their safety-related functions under design basis conditions; and

(ii) Corrective action. Conditions that would prevent a RISC–3 SSC from performing its safety-related functions under design basis conditions must be corrected in a timely manner. For significant conditions adverse to quality, measures must be taken to provide reasonable confidence that the cause of the condition is determined and corrective action taken to preclude repetition.

(e) Feedback and process adjustment—

(1) RISC–1, RISC–2, RISC–3 and RISC–4 SSCs. The licensee shall review changes to the plant, operational practices, applicable plant and industry operational experience, and, as appropriate, update the PRA and SSC categorization and treatment processes. The licensee shall perform this review in a timely manner but no longer than once every two refueling outages.

(2) RISC–1 and RISC–2 SSCs. The licensee shall monitor the performance of RISC–1 and RISC–2 SSCs. The licensee shall make adjustments as necessary to either the categorization or treatment processes so that the categorization process and results are maintained valid.

(3) RISC–3 SSCs. The licensee shall consider data collected in §50.69(d)(2)(1) for RISC–3 SSCs to determine if there are any adverse changes in performance such that the SSC unreliability values approach or exceed the values used in the evaluations conducted to satisfy §50.69(c)(1)(iv). The licensee shall make adjustments as necessary to the categorization or treatment processes so that the categorization process and results are maintained valid.

(f) Program documentation, change control and records. (1) The licensee or applicant shall document the basis for its categorization of any SSC under paragraph (c) of this section before removing any requirements under §50.69(b)(1) for those SSCs.

(2) Following implementation of this section, licensees and applicants shall update their final safety analysis report (FSAR) to reflect which systems have been categorized, in accordance with §50.71(e).

(3) When a licensee first implements this section for a SSC, changes to the FSAR for the implementation of the changes in accordance with §50.69(d) need not include a supporting §50.59 evaluation of the changes directly related to implementation. Thereafter, changes to the programs and procedures for implementation of §50.69(d), as described in the FSAR, may be made if the requirements of this section and §50.59 continue to be met.

(4) When a licensee first implements this section for a SSC, changes to the quality assurance plan for the implementation of the changes in accordance with §50.69(d) need not include a supporting §50.54(a) review of the changes directly related to implementation. Thereafter, changes to the programs and procedures for implementation of §50.69(d), as described in the quality assurance plan may be made if the requirements of this section and §50.54(a) continue to be met.

(g) Reporting. The licensee shall submit a licensee event report under
§ 50.73(b) for any event or condition that prevented, or would have prevented, a RISC–1 or RISC–2 SSC from performing a safety significant function.

§ 50.71 Maintenance of records, making of reports.

(a) Each licensee, including each holder of a construction permit or early site permit, shall maintain all records and make all reports, in connection with the activity, as may be required by the conditions of the license or permit or by the regulations, and orders of the Commission in effectuating the purposes of the Act, including Section 105 of the Act, and the Energy Reorganization Act of 1974, as amended.

(b) With respect to any production or utilization facility of a type described in §50.21(b) or 50.22, or a testing facility, each licensee and each holder of a construction permit shall submit its annual financial report, including the certified financial statements, to the Commission, as specified in §50.4, upon