§ 192.923 How is direct assessment used and for what threats?

(a) General. An operator may use direct assessment either as a primary assessment method or as a supplement to the other assessment methods allowed under this subpart. An operator may only use direct assessment as the primary assessment method to address the identified threats of external corrosion (ECDA), internal corrosion (ICDA), and stress corrosion cracking (SCCDA).

(b) Primary method. An operator using direct assessment as a primary assessment method for any applicable threat must have a plan that complies with the requirements in—

(1) ASME/ANSI B31.8S (incorporated by reference, see §192.7), section 6.4; NACE SP0502–2008 (incorporated by reference, see §192.7); and §192.925 if addressing external corrosion (ECDA).

(2) ASME/ANSI B31.8S, section 6.4 and appendix B2, and §192.927 if addressing internal corrosion (ICDA).

(3) ASME/ANSI B31.8S, appendix A3, and §192.929 if addressing stress corrosion cracking (SCCDA).

(c) Supplemental method. An operator using direct assessment as a supplemental assessment method for any applicable threat must have a plan that follows the requirements for confirmatory direct assessment in §192.931.

§ 192.925 What are the requirements for using External Corrosion Direct Assessment (ECDA)?

(a) Definition. ECDA is a four-step process that combines preassessment, indirect inspection, direct examination, and post assessment to evaluate the threat of external corrosion to the integrity of a pipeline.

(b) General requirements. An operator that uses direct assessment to assess the threat of external corrosion must follow the requirements in this section, in ASME/ANSI B31.8S (incorporated by reference, see §192.7), section 6.4, and in NACE SP0502–2008 (incorporated by reference, see §192.7). An operator must develop and implement a direct assessment plan that has procedures addressing preassessment, indirect examination, direct examination, and post-assessment. If the ECDA detects pipeline coating damage, the operator must also integrate the data from the ECDA with other information from the data integration (§192.917(b)) to evaluate the covered segment for the threat of third party damage, and to address the threat as required by §192.917(e)(1).

(1) Preassessment. In addition to the requirements in ASME/ANSI B31.8S section 6.4 and NACE SP0502–2008, section 3, the plan’s procedures for preassessment must include—

(i) Provisions for applying more restrictive criteria when conducting ECDA for the first time on a covered segment; and

(ii) The basis on which an operator selects at least two different, but complementary indirect assessment tools to assess each ECDA Region. If an operator utilizes an indirect inspection method that is not discussed in Appendix A of NACE SP0502–2008, the operator must demonstrate the applicability, validation basis, equipment used, application procedure, and utilization of data for the inspection method.

(2) Indirect examination. In addition to the requirements in ASME/ANSI B31.8S section 6.4 and NACE SP0502–2008, section 4, the plan’s procedures for indirect examination of the ECDA regions must include—

(i) Provisions for applying more restrictive criteria when conducting
§ 192.927 What are the requirements for using Internal Corrosion Direct Assessment (ICDA)?

(a) Definition. Internal Corrosion Direct Assessment (ICDA) is a process an operator uses to identify areas along the pipeline where fluid or other electrolyte introduced during normal operation or by an upset condition may reside, and then focuses direct examination on the locations in covered segments where internal corrosion is most likely to exist. The process identifies the potential for internal corrosion caused by microorganisms, or fluid with CO₂, O₂, hydrogen sulfide or other contaminants present in the gas.

(b) General requirements. An operator using direct assessment as an assessment method to address internal corrosion in a covered pipeline segment must follow the requirements in this section and in ASME/ANSI B31.8S (incorporated by reference, see §192.7), section 6.4 and appendix B2. The ICDA process described in this section applies only for a segment of pipe transporting nominally dry natural gas, and not for a segment with electrolyte nominally present in the gas stream. If an operator uses ICDA to assess a covered segment operating with electrolyte present in the gas stream, the operator must develop a plan that demonstrates how it will conduct ICDA in the segment to effectively address internal corrosion, and must provide notification in accordance with §192.921 (a)(4) or §192.937(c)(4).

(c) The ICDA plan. An operator must develop and follow an ICDA plan that