§ 192.123 Design limitations for plastic pipe.

(a) Except as provided in paragraph (e) and paragraph (f) of this section, the design pressure may not exceed a gauge pressure of 100 psig (689 kPa) for plastic pipe used in:

(1) Distribution systems; or
(2) Classes 3 and 4 locations.

(b) Plastic pipe may not be used where operating temperatures of the pipe will be:

(1) Below 20 °F (−20 °C), or −40 °F (−40 °C) if all pipe and pipeline components whose operating temperature will be below 29 °C (−20 °F) have a temperature rating by the manufacturer consistent with that operating temperature; or
(2) Above the following applicable temperatures:
 (i) For thermoplastic pipe, the temperature at which the HDB used in the design formula under § 192.121 is determined.
 (ii) For reinforced thermosetting plastic pipe, 150 °F (66 °C).

(c) The wall thickness for thermoplastic pipe may not be less than 0.062 inches (1.57 millimeters).

(d) The wall thickness for reinforced thermosetting plastic pipe may not be less than that listed in the following table:

<table>
<thead>
<tr>
<th>Nominal size in inches (millimeters)</th>
<th>Minimum wall thickness inches (millimeters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (51)</td>
<td>0.060 (1.52)</td>
</tr>
<tr>
<td>3 (76)</td>
<td>0.060 (1.52)</td>
</tr>
<tr>
<td>4 (102)</td>
<td>0.070 (1.78)</td>
</tr>
<tr>
<td>6 (152)</td>
<td>0.100 (2.54)</td>
</tr>
</tbody>
</table>

(e) The design pressure for thermoplastic pipe produced after July 14, 2004 may exceed a gauge pressure of 100 psig (689 kPa) provided that:

(1) The design pressure does not exceed 125 psig (862 kPa);
(2) The material is a PE2406 or a PE3408 as specified within ASTM D2513-99 (incorporated by reference, see § 192.7);
(3) The pipe size is nominal pipe size (IPS) 12 or less; and
(4) The design pressure is determined in accordance with the design equation defined in § 192.121.

(f) The design pressure for polyamide-11 (PA–11) pipe produced after January 23, 2009 may exceed a gauge pressure of 100 psig (689 kPa) provided that:

(1) The design pressure does not exceed 200 psig (1379 kPa);
(2) The pipe size is nominal pipe size (IPS or CTS) 4-inch or less; and
(3) The pipe has a standard dimension ratio of SDR–11 or greater (i.e., thicker pipe wall).

§ 192.125 Design of copper pipe.

(a) Copper pipe used in mains must have a minimum wall thickness of 0.065 inches (1.65 millimeters) and must be hard drawn.

(b) Copper pipe used in service lines must have wall thickness not less than that indicated in the following table:

<table>
<thead>
<tr>
<th>Standard size inch (millimeter)</th>
<th>Nominal O.D. inch (millimeter)</th>
<th>Wall thickness inch (millimeter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>½ (13)</td>
<td>.625 (16)</td>
<td>.045 (1.14)</td>
</tr>
<tr>
<td>¾ (16)</td>
<td>.750 (19)</td>
<td>.045 (1.14)</td>
</tr>
<tr>
<td>1 (19)</td>
<td>.875 (22)</td>
<td>.045 (1.14)</td>
</tr>
<tr>
<td>1¼ (22)</td>
<td>1.125 (29)</td>
<td>.050 (1.27)</td>
</tr>
<tr>
<td>1½ (25)</td>
<td>1.375 (35)</td>
<td>.055 (1.40)</td>
</tr>
<tr>
<td>1¾ (28)</td>
<td>1.625 (41)</td>
<td>.060 (1.52)</td>
</tr>
</tbody>
</table>

(c) Copper pipe used in mains and service lines may not be used at pressures in excess of 100 p.s.i. (689 kPa) gage.

(d) Copper pipe that does not have an internal corrosion resistant lining may not be used to carry gas that has an average hydrogen sulfide content of more than 0.3 grains/100 ft³ (6.9/m³) under

418
standard conditions. Standard conditions refers to 60 °F and 14.7 psia (15.6 °C and one atmosphere) of gas.

Subpart D—Design of Pipeline Components

§ 192.141 Scope.
This subpart prescribes minimum requirements for the design and installation of pipeline components and facilities. In addition, it prescribes requirements relating to protection against accidental overpressuring.

§ 192.143 General requirements.
(a) Each component of a pipeline must be able to withstand operating pressures and other anticipated loadings without impairment of its serviceability with unit stresses equivalent to those allowed for comparable material in pipe in the same location and kind of service. However, if design based upon unit stresses is impractical for a particular component, design may be based upon a pressure rating established by the manufacturer by pressure testing that component or a prototype of the component.
(b) The design and installation of pipeline components and facilities must meet applicable requirements for corrosion control found in subpart I of this part.

§ 192.144 Qualifying metallic components.
Notwithstanding any requirement of this subpart which incorporates by reference an edition of a document listed in §192.7 or Appendix B of this part, a metallic component manufactured in accordance with any other edition of that document is qualified for use under this part if—
(a) It can be shown through visual inspection of the cleaned component that no defect exists which might impair the strength or tightness of the component; and
(b) The edition of the document under which the component was manufactured has equal or more stringent requirements for the following as an edition of that document currently or previously listed in §192.7 or appendix B of this part:
(1) Pressure testing;
(2) Materials; and
(3) Pressure and temperature ratings.

§ 192.145 Valves.
(a) Except for cast iron and plastic valves, each valve must meet the minimum requirements of API 6D (incorporated by reference, see §192.7), or to a national or international standard that provides an equivalent performance level. A valve may not be used under operating conditions that exceed the applicable pressure-temperature ratings contained in those requirements.
(b) Each cast iron and plastic valve must comply with the following:
(1) The valve must have a maximum service pressure rating for temperatures that equal or exceed the maximum service temperature.
(2) The valve must be tested as part of the manufacturing, as follows:
 (i) With the valve in the fully open position, the shell must be tested with no leakage to a pressure at least 1.5 times the maximum service rating.
 (ii) After the shell test, the seat must be tested to a pressure not less than 1.5 times the maximum service pressure rating. Except for swing check valves, test pressure during the seat test must be applied successively on each side of the closed valve with the opposite side open. No visible leakage is permitted.
(3) After the last pressure test is completed, the valve must be operated through its full travel to demonstrate freedom from interference.
(c) Each valve must be able to meet the anticipated operating conditions.
(d) No valve having shell (body, bonnet, cover, and/or end flange) components made of ductile iron may be used at pressures exceeding 80 percent of the pressure ratings for comparable steel valves at their listed temperature. However, a valve having shell components made of ductile iron may be used at pressures up to 80 percent of the