§ 111.30–17 Protection of instrument circuits.

(a) Each circuit that supplies a device on a switchboard, except a circuit under paragraph (b) of this section, must have overcurrent protection.

(b) A circuit that supplies a device on a switchboard must not have overload protection if it supplies:

(1) An electric propulsion control;
(2) A voltage regulator;
(3) A ship’s service generator circuit breaker tripping control; or
(4) A device that creates a hazard to the vessel if deenergized.

(c) If short circuit protection is used in any of the circuits listed in paragraph (b) of this section, it must be set at not less than 500% of the expected current.

(d) A secondary circuit of a current transformer must not be fused, and the circuit from a current transformer to a device that is not in the switchboard must have a high voltage protector to short the transformer during an open circuit.

§ 111.30–19 Buses and wiring.

(a) General. Each bus must meet the requirements of either—

(1) Section 7.10 of IEEE 45–1998 (incorporated by reference; see 46 CFR 110.10–1); or
(2) IEC 60092–302 (clause 7) (incorporated by reference; see 46 CFR 110.10–1).

(b) Wiring. Instrumentation and control wiring must be—

(1) Suitable for installation within in a switchboard enclosure and be rated at 90 °C or higher;
(2) Stranded copper;
(3) No. 14 AWG (2.10 mm²) or larger or must be ribbon cable or similar conductor size cable recommended for use in low-power instrumentation, monitoring, or control circuits by the equipment manufacturer;
(4) Flame-retardant meeting test VW-1 of UL 1581 or IEC 332–1 (both incorporated by reference; see 46 CFR 110.10–1); and
(5) Extra flexible, if used on a hinged panel.

§ 111.30–24 Generation systems greater than 3000 kw.

Except on a non-self-propelled mobile offshore drilling unit (MODU) and a non-self-propelled floating Outer Continental Shelf facility, when the total installed electric power of the ship’s service generation system is more than 3000 kW, the switchboard must have the following:

(a) At least two sections of the main bus that are connected by:

(1) A non-automatic circuit breaker;
(2) A disconnect switch; or
(3) Removable links.

(b) As far as practicable, the connection of generators and duplicated equipment equalized between the sections of the main bus.

§ 111.30–25 Alternating-current ship’s service switchboards.

(a) Except as allowed in paragraph (g) of this section, each alternating-current ship’s service switchboard must have the equipment required by paragraphs (b) through (f) of this section.

(b) For each connected generator, each switchboard must have the following:

(1) A circuit breaker that meets § 111.12–11 and § 111.50–5.
(2) A disconnect switch or link for each generator conductor, except a switchboard having a draw-out or plug-in type generator circuit breaker that disconnects:

(i) Each generator conductor; or
(ii) If there is a switch in the generator neutral, each ungrounded conductor.
(3) A pilot lamp connected between the generator and the circuit breaker.
(4) An ammeter with a selector switch that connects the ammeter to show the current in each phase.
(5) A voltmeter with a selector switch that connects the voltmeter to show the:

(i) Generator voltage of each phase; and
(ii) Bus voltage of one phase.
(6) A voltage regulator and voltage regulator functional cut-out switch.

(c) For each generator that is not excited from a variable voltage or rotary
amplifier that is controlled by a voltage regulator unit acting on the exciter field, each switchboard must have:

1. A generator field rheostat;
2. A double-pole field switch;
3. Discharge clips; and
4. A discharge resistor.

(d) If generators are arranged for parallel operation, each switchboard must have:

1. A speed control for the prime mover of each generator;
2. An indicating wattmeter for each generator; and
3. A synchroscope and synchronizing lamp that have a selector switch to show synchronization for paralleling generators.

(e) Each switchboard must have the following:

1. Ground detection that meets Subpart 111.05 for the:
 (i) Ship’s service power system;
 (ii) Normal lighting system; and
 (iii) Emergency lighting system.
2. A frequency meter with a selector switch to connect the meter to each generator.
3. An exciter field rheostat.
4. For each shore power connection each switchboard must have:
 1. A circuit breaker or fused switch;
 2. A pilot light connected to the shore side of the circuit breaker or fused switch; and
 3. One of the voltmeters under paragraph (b)(5) of this section connected to show the voltage of each phase of the shore power connection.

(g) The equipment under paragraphs (b), (d), (e), and (f) of this section, except the equipment under paragraphs (b)(1), (b)(2), and (f)(1), must be on the ship’s service switchboard or on a central control console that:

1. Is in the same control area as the main ship’s service switchboard or can remotely control the ship’s service generator circuit breaker;
2. Has a generator section that has only generator functions;
3. Has the generator section segregated from each other console section by a fire-resistant barrier; and
4. Has cabling from the main switchboard to the generator section of the console that:

(i) Has only generator control and generator instrumentation circuits; and
(ii) Is protected from mechanical damage.

§ 111.30–27 Direct current ship’s service switchboards.

(a) Each direct current ship’s service switchboard must have the equipment required by paragraphs (b) through (f) of this section.

(b) For each connected generator, each switchboard must have the following:

1. A circuit breaker that meets §111.12–11 and §111.50–5.
2. A disconnect switch or link for each generator conductor, except a switchboard having a draw-out or plug-in type generator circuit breaker that disconnects—
 (i) Each conductor; or
 (ii) If there is a switch in the generator neutral, each ungrounded conductor.
3. A field rheostat.
4. A pilot lamp connected between the generator and circuit breaker.

(c) For each two-wire generator, each switchboard must have:

1. An ammeter; and
2. A voltmeter with a selector switch that connects the voltmeter to show:
 (i) Generator voltage; and
 (ii) Bus voltage.

(d) For each three-wire generator, each switchboard must have the following:

1. An ammeter for:
 (i) The positive lead; and
 (ii) The negative lead.
2. A center zero type ammeter for the neutral ground connection.
3. A voltmeter with a selector switch that connects the voltmeter to show generator and bus voltage:
 (i) Positive to negative; and
 (ii) Positive to neutral; and
 (iii) Neutral to negative.
4. Each switchboard must have ground detection that meets Subpart 111.05 for the:
 1. Main power system;
 2. Main lighting system; and
 3. Emergency lighting system.
5. For each shore power connection, each switchboard must have: