§ 600.510-08 Calculation of average fuel economy.

(a) Average fuel economy will be calculated to the nearest 0.1 mpg for the classes of automobiles identified in this section, and the results of such calculations will be reported to the Secretary of Transportation for use in determining compliance with the applicable fuel economy standards.

(1) An average fuel economy calculation will be made for the category of passenger automobiles as determined by the Secretary of Transportation. For example, categories may include, but are not limited to domestically manufactured and/or non-domestically manufactured passenger automobiles as determined by the Secretary of Transportation.

(2) An average fuel economy calculation will be made for the category of trucks as determined by the Secretary of Transportation. For example, categories may include, but are not limited to domestically manufactured trucks, non-domestically manufactured trucks, light-duty trucks, medium-duty passenger vehicles, and/or heavy-duty trucks as determined by the Secretary of Transportation.

(3) The fuel economy value for each vehicle configuration is the combined fuel economy calculated according to §600.206-08(a)(3) except that:

(i) Separate fuel economy values will be calculated for vehicle configurations associated with car lines for each category of passenger automobiles and trucks as determined by the Secretary of Transportation pursuant to paragraphs (a)(1) and (a)(3) of this section.

(ii) Total model year production data, as required by this subpart, will be used instead of sales projections; and

(iii) The fuel economy value of diesel-powered model types will be multiplied by the factor 1.0 to convert gallons of diesel fuel to equivalent gallons of gasoline.

(c) Except as permitted in paragraph (d) of this section, the average fuel economy will be calculated individually for each category identified in paragraph (a) of this section as follows:

(1) Divide the total production volume of that category of automobiles by

(2) A sum of terms, each of which corresponds to a model type within that category of automobiles and is a fraction determined by dividing:

(i) The number of automobiles of that model type produced by the manufacturer in the model year by

(ii) For gasoline-fueled and diesel-fueled model types, the fuel economy calculated for that model type in accordance with paragraph (b)(2) of this section or

(iii) For alcohol-fueled model types, the fuel economy value calculated for that model type in accordance with paragraph (b)(2) of this section divided
by 0.15 and rounded to the nearest 0.1 mpg; or

(iv) For natural gas-fueled model types, the fuel economy value calculated for that model type in accordance with paragraph (b)(2) of this section divided by 0.15 and rounded to the nearest 0.1 mpg; or

(v) For alcohol dual fuel model types, for model years 1993 through 2019, the harmonic average of the following two terms; the result rounded to the nearest 0.1 mpg:

(A) The combined model type fuel economy value for operation on gasoline or diesel fuel as determined in § 600.208(b)(5)(i); and

(B) The combined model type fuel economy value for operation on alcohol fuel as determined in § 600.208(b)(5)(i) divided by 0.15 provided the requirements of § 600.510(g) are met; or

(vi) For natural gas dual fuel model types, for model years 1993 through 2019, the harmonic average of the following two terms; the result rounded to the nearest 0.1 mpg:

(A) The combined model type fuel economy value for operation on gasoline or diesel as determined in § 600.208(b)(5)(i); and

(B) The combined model type fuel economy value for operation on natural gas as determined in § 600.208(b)(5)(ii) divided by 0.15 provided the requirements of paragraph (g) of this section are met.

(d) The Administrator may approve alternative calculation methods if they are part of an approved credit plan under the provisions of 15 U.S.C. 2003.

(e) For passenger categories identified in paragraphs (a)(1) and (2) of this section, the average fuel economy calculated in accordance with paragraph (c) of this section shall be adjusted using the following equation:

\[
\text{AFE}_{\text{adj}} = \text{AFE} \times \left(\frac{(0.55 \times a \times c) + (0.45 \times c)}{(0.55 \times a) + 0.4487} \right) \div (c \times \text{IW})
\]

Where:

\[
\text{AFE}_{\text{adj}} = \text{Adjusted average combined fuel economy, rounded to the nearest 0.1 mpg.}
\]

\[
\text{AFE} = \text{Average combined fuel economy as calculated in paragraph (c) of this section, rounded to the nearest 0.001 mpg.}
\]

\[
a = \text{Sales-weight average (rounded to the nearest 0.0001 mpg) of all model type highway fuel economy values (rounded to the nearest 0.1 mpg) divided by the sales-weighted average (rounded to the nearest 0.0001 mpg) of all model type city fuel economy values (rounded to the nearest 0.1 mpg). The quotient shall be rounded to 4 decimal places. These average fuel economies shall be determined using the methodology of paragraph (c) of this section.}
\]

\[
c = 0.0022 \text{ for the 1986 model year.}
\]

\[
\text{For 1987, the Administrator will specify the } c \text{ value after the necessary laboratory humidity and test fuel data become available. For 1988 and later model years, the Administrator will specify the } c \text{ value after the necessary laboratory humidity and test fuel data become available.}
\]

\[
\text{IF} = \left(9.2917 \times 10^{-1} \times \text{SF}_{\text{SWC}} \times \text{FE}_{\text{SWC}}\right) - (3.5123 \times 10^{-1} \times \text{SF}_{\text{ETW}} \times \text{FE}_{\text{ETW}}).
\]

\[
\text{NOTE: Any calculated value of IF less than zero shall be set equal to zero.}
\]

\[
\text{SF}_{\text{SWC}} = \text{The 3000 lb. inertia weight class sales divided by total sales. The quotient shall be rounded to 4 decimal places.}
\]

\[
\text{SF}_{\text{ETW}} = \text{The 4000 lb. equivalent test weight category sales divided by total sales. The quotient shall be rounded to 4 decimal places.}
\]

\[
\text{FE}_{\text{SWC}} = \text{The sales-weighted average combined fuel economy of all 3000 lb. inertia weight class base levels in the compliance category. Round the result to the nearest 0.0001 mpg.}
\]

\[
\text{FE}_{\text{ETW}} = \text{The sales-weighted average combined fuel economy of all 4000 lb. inertia weight class base levels in the compliance category. Round the result to the nearest 0.0001 mpg.}
\]

(f) The Administrator shall calculate and apply additional average fuel economy adjustments if, after notice and opportunity for comment, the Administrator determines that, as a result of test procedure changes not previously considered, such correction is necessary to yield fuel economy test results that are comparable to those obtained under the 1975 test procedures. In making such determinations, the Administrator must find that:

(1) A directional change in measured fuel economy of an average vehicle can be predicted from a revision to the test procedures;

(2) The magnitude of the change in measured fuel economy for any vehicle or fleet of vehicles caused by a revision to the test procedures is quantifiable from theoretical calculations or best available test data;

(3) The impact of a change on average fuel economy is not due to eliminating
the ability of manufacturers to take advantage of flexibility within the existing test procedures to gain measured improvements in fuel economy which are not the result of actual improvements in the fuel economy of production vehicles;

(4) The impact of a change on average fuel economy is not solely due to a greater ability of manufacturers to reflect in average fuel economy those design changes expected to have comparable effects on in-use fuel economy;

(5) The test procedure change is required by EPA or is a change initiated by EPA in its laboratory and is not a change implemented solely by a manufacturer in its own laboratory.

(g)(1) Alcohol dual fuel automobiles and natural gas dual fuel automobiles must provide equal or greater energy efficiency while operating on alcohol or natural gas as while operating on gasoline or diesel fuel to obtain the CAFE credit determined in paragraphs (c)(2)(v) and (vi) of this section. The following equation must hold true:

\[\frac{E_{\text{pet}}}{E_{\text{alt}}} \geq 1 \]

Where:

- \(E_{\text{pet}} \) = \(\frac{\text{FE}_{\text{pet}}}{\text{NHV}_{\text{pet}} \times D_{\text{pet}}} \) = energy efficiency while operating on petroleum fuel rounded to the nearest 0.01 miles/million BTU;
- \(E_{\text{alt}} \) = \(\frac{\text{FE}_{\text{alt}}}{\text{NHV}_{\text{alt}} \times D_{\text{alt}}} \) = energy efficiency while operating on alternative fuel rounded to the nearest 0.01 miles/million BTU;
- \(\text{FE}_{\text{pet}} \) is the fuel economy [miles/gallon] while operated on petroleum fuel (gasoline or diesel) as determined in §600.113(b) and (h);
- \(\text{NHV}_{\text{pet}} \) is the net (lower) heating value [BTU/lb] of the petroleum fuel;
- \(D_{\text{pet}} \) is the density [lb/gallon for liquid fuels or lb/100 standard cubic feet for gaseous fuels] of the alternative fuel;
- \(\text{FE}_{\text{alt}} \) is the fuel economy [miles/gallon] while operated on alternative fuel as determined in §600.113(b) and (h);
- \(\text{NHV}_{\text{alt}} \) is the net (lower) heating value [BTU/lb] of the alternative fuel;
- \(D_{\text{alt}} \) is the density [lb/gallon for liquid fuels or lb/100 standard cubic feet for gaseous fuels] of the petroleum fuel.

(i) The equation must hold true for both the FTP city and HFET highway fuel economy values for each test of each test vehicle.

This incorporation by reference was approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the American Society for Testing and Materials, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428–2959. Copies may be inspected at U.S. EPA Headquarters Library, EPA West Building, Constitution Avenue and 14th Street, NW., Room 3940, Washington, DC, or at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202–741–6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html.

(B) The density for alcohol fuels shall be determined per ASTM D 1298–85 (Reapproved 1990) “Standard Practice for Density, Relative Density (Specific Gravity), or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method.” This incorporation by reference was approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the American Society for Testing and Materials, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428–2959. Copies may be inspected at U.S. EPA Headquarters Library, EPA West Building, Constitution Avenue and 14th Street, NW., Room 3940, Washington, DC, or at the National Archives and Records Administration (NARA).

For information on the availability of this material at NARA, call 202–741–6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html.

(iii) The net heating value and density of gasoline are to be determined by the manufacturer in accordance with §600.113(f).

(2) [Reserved]

(3) Alcohol dual fuel passenger automobiles and natural gas dual fuel passenger automobiles manufactured during model years 1993 through 2019 must meet the minimum driving range requirements established by the Secretary of Transportation (49 CFR part
§ 600.510–12 Calculation of average fuel economy and average carbon-related exhaust emissions.

(a)(1) Average fuel economy will be calculated to the nearest 0.1 mpg for the categories of automobiles identified in this section, and the results of such calculations will be reported to the Secretary of Transportation for use in determining compliance with the applicable fuel economy standards.

(i) An average fuel economy calculation will be made for the category of passenger automobiles as determined by the Secretary of Transportation. For example, categories may include, but are not limited to domestically manufactured and/or non-domestically manufactured passenger automobiles as determined by the Secretary of Transportation.

(ii) [Reserved]

(iii) An average fuel economy calculation will be made for the category of trucks as determined by the Secretary of Transportation. For example, categories may include, but are not limited to domestically manufactured trucks, non-domestically manufactured trucks, light-duty trucks, medium-duty passenger vehicles, and/or heavy-duty trucks as determined by the Secretary of Transportation.

(iv) [Reserved]

(2) Average carbon-related exhaust emissions will be calculated to the nearest one gram per mile for the categories of automobiles identified in this section, and the results of such calculations will be reported to the Administrator for use in determining compliance with the applicable CO₂ emission standards.

(i) An average carbon-related exhaust emissions calculation will be made for passenger automobiles.

(ii) An average carbon-related exhaust emissions calculation will be made for light trucks.

(b) For the purpose of calculating average fuel economy under paragraph (c) of this section and for the purpose of calculating average carbon-related exhaust emissions under paragraph (j) of this section:

(1) All fuel economy and carbon-related exhaust emissions data submitted in accordance with §600.006(e) or §600.512(c) shall be used.

(2) The combined city/highway fuel economy and carbon-related exhaust emission values will be calculated for each model type in accordance with §600.208–12 of this section except that:

(i) Separate fuel economy values will be calculated for model types and base levels associated with car lines for each category of passenger automobiles and light trucks as determined by the Secretary of Transportation.