§ 600.114–08 Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

Paragraphs (a) through (c) of this section apply to data used for fuel economy labeling under subpart D of this part. Paragraphs (d) through (f) of this section are used to calculate 5-cycle carbon-related exhaust emissions values for the purpose of determining optional technology-based CO\textsubscript{2} emissions credits under the provisions of paragraph (d) of §86.1866–12 of this chapter.

(a) City fuel economy. For each vehicle tested under §600.010–08(c)(i) and (ii), determine the 5-cycle city fuel economy using the following equation:

\[
\text{FC}_{\text{NG}} = \text{cubic feet of natural gas fuel consumed per mile} = \frac{(0.749)\text{CH}_4 + (\text{CWF}_{\text{NMHC}})\text{NMHC} + (0.429)\text{CO} + (0.273)(\text{CO}_2)}{\text{CWF}_{\text{NG}} \text{D}_{\text{NG}}}
\]

where:

\begin{itemize}
 \item \text{CWF}_{\text{NG}} = \text{the carbon weight fraction of the natural gas fuel as calculated in paragraph (d) of this section.}
 \item \text{WF}_{\text{CO}_2} = \text{weight fraction carbon dioxide of the natural gas fuel calculated using the mole fractions and molecular weights of the natural gas fuel constituents per ASTM D 1945.}
\end{itemize}

Environmental Protection Agency § 600.114–08

Where:

Bag Y FE = the fuel economy in miles per gallon of fuel during the specified bag of the FTP test conducted at an ambient temperature of 75 °F or 20 °F, and,

\[
\text{(ii) Running FC} = 0.82 \times \left[\frac{0.48}{\text{Bag 2}_Y \text{ FE}} + \frac{0.41}{\text{Bag 3}_Y \text{ FE}} + \frac{0.11}{\text{US06 City FE}}\right] + 0.18 \times \left[\frac{0.5}{\text{Bag 2}_Y \text{ FE}} + \frac{0.5}{\text{Bag 3}_Y \text{ FE}}\right] \\
+ 0.133 \times 1.083 \times \left[\frac{1}{\text{SC03 FE}} - \frac{0.61}{\text{Bag 3}_Y \text{ FE}} + \frac{0.39}{\text{Bag 2}_Y \text{ FE}}\right].
\]

Where:

US06 City FE = fuel economy in miles per gallon over the “city” portion of the US06 test.
HFET FE = fuel economy in miles per gallon over the HFET test.
SC03 FE = fuel economy in miles per gallon over the SC03 test.

(b) Highway fuel economy. (1) For each vehicle tested under §§600.010–08(a) and (c)(1)(ii)(B), determine the 5-cycle highway fuel economy using the following equation:

\[
\text{Highway FE} = 0.905 \times \frac{1}{\text{Start FC} + \text{Running FC}}
\]

Where:

(i) Start FC = \[0.33 \times \left(\frac{0.76 \times \text{Start Fuel}_{75} + 0.24 \times \text{Start Fuel}_{20}}{60}\right)\]

Where:

\[
\text{Start Fuel}_x = 3.6 \times \left(\frac{1}{\text{Bag 1 FE}_x} - \frac{1}{\text{Bag 3 FE}_x}\right)
\]

and,

(ii) Running FC = \[1.007 \times \left(\frac{0.79}{\text{US06 Highway FE}} + \frac{0.21}{\text{HFET FE}}\right) + 0.133 \times 0.377 \times \left[\frac{1}{\text{SC03 FE}} - \frac{0.61}{\text{Bag 3 FE}} + \frac{0.39}{\text{Bag 2 FE}}\right].
\]

Where:

US06 Highway FE = fuel economy in mile per gallon over the highway portion of the US06 test.
HFET FE = fuel economy in mile per gallon over the HFET test.
SC03 FE = fuel economy in mile per gallon over the SC03 test.
(2) If the condition specified in §600.115–08(b)(2)(iii)(B) is met, in lieu of using the calculation in paragraph (b)(1) of this section, the manufacturer may optionally determine the highway fuel economy using the following modified 5-cycle equation which utilizes data from FTP, HFET, and US06 tests, and applies mathematical adjustments for Cold FTP and SC03 conditions:

(i) Perform a US06 test in addition to the FTP and HFET tests.

(ii) Determine the 5-cycle highway fuel economy according to the following formula:

\[
\text{Highway FE} = 0.905 \times \frac{1}{\text{Start FC} + \text{Running FC}}
\]

Where:

\[
(A) \quad \text{StartFC} = 0.33 \times \frac{\left(0.005515 + 1.13637 \times \text{StartFuel}_{75}\right)}{60.0}
\]

Where:

\[
\text{StartFuel}_{75} = 3.6 \times \left(\frac{1}{\text{Bag 1 FE}_{75}} - \frac{1}{\text{Bag 3 FE}_{75}}\right)
\]

Bag y FE_{75} = the fuel economy in miles per gallon of fuel during the specified bag of the FTP test conducted at an ambient temperature of 75 °F.

(B) Running FC = 1.007 \times \left[0.79 \frac{\text{US06 Highway FE}}{\text{US06 Highway FE}} + 0.21 \frac{\text{HFET FE}}{\text{US06 FE}} + 0.377 \times 0.133 \times \left(0.00540 + 0.1357 \frac{\text{US06 FE}}{\text{US06 FE}}\right)\right]

Where:

US06 Highway FE = fuel economy in miles per gallon over the highway portion of the US06 test.

HFET FE = fuel economy in miles per gallon over the HFET test.

US06 FE = fuel economy in miles per gallon over the entire US06 test.

(c) Fuel economy calculations for hybrid electric vehicles. Under the requirements of §86.1811–04(n), hybrid electric vehicles are subject to California test methods which require FTP emission sampling for the 75 °F FTP test over four phases (bags) of the UDDS (cold-start, transient, warm-start, transient). Optionally, these four phases may be combined into two phases (phases 1 + 2 and phases 3 + 4). Calculations for these sampling methods follow.

(1) Four-bag FTP equations. If the 4-bag sampling method is used, manufacturers may use the equations in paragraphs (a) and (b) of this section to determine city and highway fuel economy estimates. If this method is chosen, it must be used to determine both city and highway fuel economy. Optionally, the following calculations may be used, provided that they are used to determine both city and highway fuel economy:

(i) City fuel economy.
City FE = 0.905 × \frac{1}{(\text{Start FC} + \text{Running FC})}

Where:

(A) Start FC (gallons per mile) = 0.33 × \left(\frac{0.76 \times \text{Start FE}_{75} + 0.24 \times \text{Start FE}_{20}}{4.1} \right)

Where:

\(\text{Start FE}_{75} = 3.6 \times \left[\frac{1}{\text{Bag FE}_{15}} - \frac{1}{\text{Bag FE}_{375}} \right] + 3.9 \times \left[\frac{1}{\text{Bag FE}_{275}} - \frac{1}{\text{Bag FE}_{475}} \right] \)

and

(B) Running FC (gallons per mile) = 0.82 \times \left[\frac{0.48}{\text{Bag FE}_{475}} + \frac{0.41}{\text{Bag FE}_{375}} + \frac{0.11}{\text{US06 City FE}} \right] + 0.18 \times \left[\frac{0.5}{\text{Bag FE}_{275}} + \frac{0.5}{\text{Bag FE}_{375}} \right] + 1.083 \times \left[\frac{1}{\text{SC03 FE}} - \left(\frac{0.61}{\text{Bag FE}_{375}} + \frac{0.39}{\text{Bag FE}_{475}} \right) \right]

Where:

\(\text{Bag FE}_{X} = \) the fuel economy in miles per gallon of fuel during the specified bag \(Y \) of the FTP test conducted at an ambient temperature \(X \) of 75 °F or 20 °F.

\(\text{US06 City FE} = \) fuel economy in miles per gallon over the city portion of the US06 test.

\(\text{SC03 FE} = \) fuel economy in miles per gallon over the SC03 test.

(ii) Highway fuel economy.

Highway FE = 0.905 × \frac{1}{\text{Start FC} + \text{Running FC}}

Where:
§ 600.114–08

40 CFR Ch. I (7–1–11 Edition)

(A) Start FC = 0.33 × \[
\frac{(0.76 \times \text{Start Fuel}_{75} + 0.24 \times \text{Start Fuel}_{20})}{60}
\]

Where:

\begin{align*}
\text{Start Fuel}_{75} &= 3.6 \times \left[1 \right. \\
&\quad - \left. \frac{1}{\text{Bag 1 FE}_{75}} \right] + 3.9 \times \left[1 \right. \\
&\quad - \left. \frac{1}{\text{Bag 2 FE}_{75}} \right] + 0.75 \times \left[1 \right. \\
&\quad - \left. \frac{1}{\text{Bag 3 FE}_{75}} \right] + 0.2 \times \left[1 \right. \\
&\quad - \left. \frac{1}{\text{Bag 4 FE}_{75}} \right] \\
\text{Start Fuel}_{20} &= 3.6 \times \left[1 \right. \\
&\quad - \left. \frac{1}{\text{Bag 1 FE}_{20}} \right] + 0.75 \times \left[1 \right. \\
&\quad - \left. \frac{1}{\text{Bag 2 FE}_{20}} \right] + 0.2 \times \left[1 \right. \\
&\quad - \left. \frac{1}{\text{Bag 3 FE}_{20}} \right] \\
\end{align*}

\(\text{US06 Highway FE}\) = fuel economy in miles per gallon over the Highway portion of the US06 test,

\(\text{HFET FE}\) = fuel economy in miles per gallon over the HFET test,

\(\text{SC03 FE}\) = fuel economy in miles per gallon over the SC03 test.

(B) Running FC = 1.007 × \[
\begin{bmatrix}
0.79 \\
\text{US06 Highway FE} \\
0.21 \\
\text{HFET FE} \\
+ 0.133 \times 0.377 \times \\
\text{0.61} \\
\text{SC03 FE} \\
0.39 \\
\end{bmatrix}
\]

Where:

City FC = 0.905 \times \frac{1}{\text{Start FC + Running FC}}

Where:

(A) Start FC = 0.33 \times \frac{(0.76 \times \text{Start Fuel}_{75} + 0.24 \times \text{Start Fuel}_{20})}{4.1}

Where:

\begin{align*}
\text{Start Fuel}_{75} &= 7.5 \times \left[1 \right. \\
&\quad - \left. \frac{1}{\text{Bag 1/2 FE}_{75}} \right] + 0.8 \times \left[1 \right. \\
&\quad - \left. \frac{1}{\text{Bag 3/4 FE}_{75}} \right] \\
\text{Start Fuel}_{20} &= 3.6 \times \left[1 \right. \\
&\quad - \left. \frac{1}{\text{Bag 1 FE}_{20}} \right] + 0.8 \times \left[1 \right. \\
&\quad - \left. \frac{1}{\text{Bag 3 FE}_{20}} \right] \\
\end{align*}
Environmental Protection Agency § 600.114-08

Where:

Bag \(y \) FE\(_{20} \) = the fuel economy in miles per gallon of fuel during Bag 1 or Bag 3 of the 20 °F FTP test.

(B) Running FC = \(0.82 \times \frac{0.90}{\text{Bag 3/4 FE}} + \frac{0.10}{\text{US06 City FE}} + 0.18 \times \left(\frac{0.5}{\text{Bag 20 FE}} + \frac{0.5}{\text{Bag 30 FE}} \right) + 0.133 \times 1.083 \times \frac{1}{\text{SC03 FE}} - \frac{1}{\text{Bag 3/4 FE}} \)

Where:

US06 City FE = fuel economy in miles per gallon over the city portion of the US06 test.

SC03 FE = fuel economy in miles per gallon over the SC03 test.

Bag \(xy \) FE\(_x \) = fuel economy in miles per gallon of fuel during combined phases 1 and 2 or phases 3 and 4 of the FTP test conducted at an ambient temperature of 75 °F.

(ii) Highway fuel economy.

Highway FE = \(0.905 \times \frac{1}{\text{Start FC} + \text{Running FC}} \)

Where:

(A) Start FC = \(0.33 \times \frac{(0.76 \times \text{Start Fuel}_{20} + 0.24 \times \text{Start Fuel}_{20})}{60} \)

Where:

Start Fuel\(_{75} \) = \(7.5 \times \left[\frac{1}{\text{Bag 1/2 FE}_{75}} - \frac{1}{\text{Bag 3/4 FE}_{75}} \right] \)

and

Start Fuel\(_{20} \) = \(3.6 \times \left[\frac{1}{\text{Bag 1 FE}_{20}} - \frac{1}{\text{Bag 3 FE}_{20}} \right] \)

and
\(\text{Running FC} = 1.007 \times \left[\frac{0.79}{\text{US06 Highway FE}} + \frac{0.21}{\text{HFET FE}} \right] + 0.133 \times \left[\frac{1}{\text{SC03 FE}} - \frac{1}{\text{Bag 34 FE}} \right] \)

Where:
- \(\text{US06 Highway FE} \) = fuel economy in miles per gallon over the city portion of the US06 test.
- \(\text{SC03 FE} \) = fuel economy in miles per gallon over the SC03 test.
- \(\text{Bag y FE}_{50} \) = the fuel economy in miles per gallon of fuel during Bag 1 or Bag 3 of the 20 °F FTP test.
- \(\text{Bag x/y FE}_{x} \) = fuel economy in miles per gallon of fuel during phases 1 and 2 or phases 3 and 4 of the FTP test conducted at an ambient temperature of 75 °F.

(3) For hybrid electric vehicles using the modified 5-cycle highway calculation in paragraph (b)(2) of this section, the equation in paragraph (b)(2)(ii)(A) of this section, applies except that the equation for Start Fuel\(_{75}\) will be replaced with one of the following:

(i) The equation for Start Fuel\(_{75}\) for hybrids tested according to the 4-bag FTP is:

\[
\text{Start Fuel}_{75} = 3.6 \times \left[\frac{1}{\text{Bag 1 FE}_{75}} - \frac{1}{\text{Bag 3 FE}_{75}} \right] + 3.9 \times \left[\frac{1}{\text{Bag 2 FE}_{75}} - \frac{1}{\text{Bag 4 FE}_{75}} \right]
\]

(ii) The equation for Start Fuel\(_{75}\) for hybrids tested according to the 2-bag FTP is:

\[
\text{Start Fuel}_{75} = 7.5 \left[\frac{1}{\text{Bag 1/2 FE}_{75}} - \frac{1}{\text{Bag 3/4 FE}_{75}} \right]
\]

(d) City carbon-related exhaust emission value. For each vehicle tested, determine the 5-cycle city carbon-related exhaust emissions using the following equation:

\[
0.33 \times \left(\frac{0.76 \times \text{StartCREE}_{75} + 0.24 \times \text{StartCREE}_{20}}{4.1} \right)
\]

Where:
- \(\text{StartCREE}_{x} = 3.6 \times (\text{Bag1CREE}_{x} - \text{Bag3CREE}_{x}) \)
- \(\text{Bag Y CREE}_{x} = \text{the carbon-related exhaust emissions in grams per mile during the specified bag of the FTP test conducted at an ambient temperature of 75 °F or 20 °F.} \)
- \(\text{Running CREE} = \)

\[
0.82 \times \left[0.48 \times \text{Bag20CREE} + 0.41 \times \text{Bag32CREE} + (0.11 \times \text{US06 CityCREE}) \right] + 0.18 \times \left[0.5 \times \text{Bag20CREE} + (0.5 \times \text{Bag32CREE}) \right] + 0.144 \times \left[\text{SC03 CREE} - (0.61 \times \text{Bag32CREE}) + (0.39 \times \text{Bag20CREE}) \right]
\]

Where:
- \(\text{Bag Y CREE} = \text{carbon-related exhaust emissions in grams per mile over Bag Y at temperature X.} \)
US06 City CREE = carbon-related exhaust emissions in grams per mile over the “city” portion of the US06 test.
SC03 CREE = carbon-related exhaust emissions in grams per mile over the SC03 test.

(e) Highway carbon-related exhaust emissions. For each vehicle tested, determine the 5-cycle highway carbon-related exhaust emissions using the following equation:

$$\text{HighwayCREE} = 0.905 \times (\text{StartCREE} + \text{RunningCREE})$$

Where:

(1) StartCREE =

$$0.33 \times \left(\frac{0.76 \times \text{StartCREE}_{75} + 0.24 \times \text{StartCREE}_{20}}{60} \right)$$

Where:

StartCREEe = 3.6 \times (\text{BagCREEe} - \text{BagCREEe}_{20})
(2) Running CREE =

$$1.007 \times \left[(0.79 \times \text{US06 Highway CREE}) + (0.21 \times \text{HFET CREE}) \right] + 0.045 \times \left[\text{SC03 CREE} - ((0.61 \times \text{Bag3}_2\text{CREE}) + (0.39 \times \text{Bag4}_2\text{CREE})) \right]$$

Where:

BagY\text{CREE} = carbon-related exhaust emissions in grams per mile over Bag Y at temperature X.
US06 Highway CREE = carbon-related exhaust emissions in grams per mile over the highway portion of the US06 test.
HFET CREE = carbon-related exhaust emissions in grams per mile over the HFET test.
SC03 CREE = carbon-related exhaust emissions in grams per mile over the SC03 test.

(f) Carbon-related exhaust emissions calculations for hybrid electric vehicles. Hybrid electric vehicles shall be tested according to California test methods which require FTP emission sampling for the 75 °F FTP test over four phases (bags) of the UDDS (cold-start, transient, warm-start, transient). Optionally, these four phases may be combined into two phases (phases 1 + 2 and phases 3 + 4). Calculations for these sampling methods follow.

(1) Four-bag FTP equations. If the 4-bag sampling method is used, manufacturers may use the equations in paragraphs (a) and (b) of this section to determine city and highway carbon-related exhaust emissions values. If this method is chosen, it must be used to determine both city and highway carbon-related exhaust emissions values. Optionally, the following calculations may be used, provided that they are used to determine both city and highway carbon-related exhaust emissions values:

(i) City carbon-related exhaust emissions.

$$\text{CityCREE} = 0.905 \times (\text{StartCREE} + \text{RunningCREE})$$

Where:

(1) StartCREE =

$$0.33 \times \left(\frac{0.76 \times \text{StartCREE}_{75} + 0.24 \times \text{StartCREE}_{20}}{4.1} \right)$$

Where:

(1) StartCREEe_{75} = 3.6 \times (\text{Bag1CREE}_{75} - \text{Bag3CREE}_{20}) + 3.9 \times (\text{Bag2CREE}_{75} - \text{Bag4CREE}_{20})
(2) StartCREEe_{20} = 3.6 \times (\text{Bag1CREE}_{20} - \text{Bag3CREE}_{20})

and

RunningCREE =

$$0.82 \times \left[\text{US06 City CREE} + 0.41 \times \text{Bag3}_2\text{CREE} + 0.11 \times \text{US06 City CREE} \right] + \text{Bag3}_2\text{CREE} + (0.5 \times \text{Bag2}_2\text{CREE}) + (0.5 \times \text{Bag3}_2\text{CREE}) + 0.144 \times \left[\text{SC03 CREE} - ((0.61 \times \text{Bag3}_2\text{CREE}) + (0.39 \times \text{Bag4}_2\text{CREE})) \right]$$

Where:
US06 Highway CREE = carbon-related exhaust emissions in grams per mile over the city portion of the US06 test.

US06 Highway CREE = carbon-related exhaust emissions in miles per gallon over the Highway portion of the US06 test.

HFET CREE = carbon-related exhaust emissions in grams per mile over the HFET test.

SC03 CREE = carbon-related exhaust emissions in grams per mile over the SC03 test.

(ii) Highway carbon-related exhaust emissions.

HighwayCREE = 0.905 × (StartCREE + RunningCREE)

Where:

(A) StartCREE = 3.6 × (Bag1CREE + Bag3CREE) + 3.9 × (Bag2CREE + Bag4CREE)

and

(B) RunningCREE = 1.007 × [(0.79 × US06 Highway CREE) + (0.21 × HFET CREE)] + 0.045 × [SC03 CREE - (0.61 × Bag3CREE) + (0.39 × Bag4CREE)]

Where:

US06 Highway CREE = carbon-related exhaust emissions in grams per mile over the Highway portion of the US06 test.

HFET CREE = carbon-related exhaust emissions in grams per mile over the HFET test.

(2) Two-bag FTP equations. If the 2-bag sampling method is used for the 75 °F FTP test, it must be used to determine both city and highway carbon-related exhaust emissions. The following calculations must be used to determine both city and highway carbon-related exhaust emissions:

(i) City carbon-related exhaust emissions.

CityCREE = 0.905 × (StartCREE + RunningCREE)

Where:

(A) StartCREE = 3.6 × (Bag1⁄2 CREE - Bag3⁄4 CREE)

and

(B) RunningCREE = (0.5 × Bag2⁄4 CREE) + (0.5 × Bag3⁄4 CREE) + 0.144 × [SC03 CREE - (Bag3⁄4 CREE)]

Where:

US06 City CREE = carbon-related exhaust emissions in grams per mile over the city portion of the US06 test.

SC03 CREE = carbon-related exhaust emissions in grams per mile over the SC03 test.

Bag Y FE = the carbon-related exhaust emissions in grams per mile of fuel during Bag 1 or Bag 3 of the 20 °F FTP test.

Bag X/Y FE = carbon-related exhaust emissions in grams per mile of fuel during combined phases 1 and 2 or phases 3 and 4 of the FTP test conducted at an ambient temperature of 75 °F.
(i) **Highway carbon-related exhaust emissions.**

\[\text{HighwayCREE} = 0.905 \times (\text{StartCREE} + \text{RunningCREE}) \]

Where:

- **StartCREE**
 \[\text{StartCREE}_{75} = 7.5 \times (\text{Bag1}/2\text{CREE}) + \text{Bag3}/4\text{CREE} \]
 \[\text{StartCREE}_{20} = 3.6 \times (\text{Bag1CREE} + \text{Bag3CREE}) \]

- **RunningCREE**
 \[\text{US06 Highway CREE} = \text{carbon-related exhaust emissions in grams per mile over the city portion of the US06 test, and} \]
 \[\text{SC03 CREE} = \text{carbon-related exhaust emissions in gram per mile over the SC03 test, and} \]
 \[\text{Bag Y FE}_20 = \text{the carbon-related exhaust emissions in grams per mile of fuel during Bag 1 or Bag 3 of the 20°F FTP test, and} \]
 \[\text{Bag X/Y FE}_{75} = \text{carbon-related exhaust emissions in grams per mile of fuel during phases 1 and 2 or phases 3 and 4 of the FTP test conducted at an ambient temperature of 75°F.} \]

§ 600.115–08 Criteria for determining the fuel economy label calculation method for 2011 and later model year vehicles.

This section provides the criteria to determine if the derived 5-cycle method for determining fuel economy label values, as specified in §600.210–08 (a)(2) or (b)(2), as applicable, may be used to determine label values for 2011 and later model year vehicles. Separate criteria apply to city and highway fuel economy for each test group. The provisions of this section are optional. If this option is not chosen, or if the criteria provided in this section are not met, fuel economy label values for 2011 and later model year vehicles must be determined according to the vehicle-specific 5-cycle method specified in §600.210–08(a)(1) or (b)(1), as applicable. However, dedicated alternative-fuel vehicles, dual fuel vehicles when operating on alternative fuel, and MDPVs may use the derived 5-cycle method for determining fuel economy labels for 2011 and later model years whether or not the criteria provided in this section are met.

(a) **City fuel economy criterion.** (1) For each test group certified for emission compliance under §86.1848–01 of this chapter, the FTP, HFET, US06, SC03 and Cold FTP tests determined to be official under §86.1835–01 of this chapter are used to calculate the vehicle-specific 5-cycle city fuel economy which is then compared to the derived 5-cycle city fuel economy, as follows:

(i) The vehicle-specific 5-cycle city fuel economy from the official FTP, HFET, US06, SC03 and Cold FTP tests for the test group is determined according to the provisions of §600.114–08(a) or (c) and rounded to the nearest one tenth of a mile per gallon.

(ii) Using the same FTP data as used in paragraph (a)(1)(i) of this section, the corresponding derived 5-cycle city fuel economy is calculated according to the following equation: