Environmental Protection Agency

§ 600.111–93

Test procedures.

(a) The test procedures to be followed for generation of the city fuel economy data are those prescribed in §§ 86.127 through 86.138 of this chapter, as applicable, except as provided for in paragraph (d) of this section. (The evaporative loss portion of the test procedure may be omitted unless specifically required by the Administrator.)

(b) The test procedures to be followed for generation of the highway fuel economy data are those specified in paragraphs (b) through (j) of this section.

(1) The Highway Fuel Economy Dynamometer Procedure consists of preconditioning highway driving sequence and a measured highway driving sequence.

(2) The highway fuel economy test is designated to simulate non-metropolitan driving with an average speed of 48.6 mph and a maximum speed of 60 mph. The cycle is 10.2 miles long with 0.2 stop per mile and consists of warmed-up vehicle operation on a chassis dynamometer through a specified driving cycle. A proportional part of the diluted exhaust emission is collected continuously for subsequent analysis of hydrocarbons, carbon monoxide, carbon dioxide using a constant volume (variable dilution) sampler. Diesel dilute exhaust is continuously analyzed for hydrocarbons using a heated sample line and analyzer. Methanol and formaldehyde samples are collected and individually analyzed for methanol-fueled vehicles. (measurement of methanol and formaldehyde may be omitted for 1993 through 1994 model year methanol-fueled vehicles provided a HFID calibrated on methanol is used for measuring HC plus methanol).

(c) Transmission. The provisions of § 86.129 of this chapter apply for vehicle transmission operation during highway fuel economy testing under this subpart.

(d) Road load power and test weight determination. Section 86.129 of this chapter applies for determination of road load power and test weight for highway fuel economy testing. The test weight for the testing of a certification vehicle will be that test weight specified by the Administrator under the provisions of part 86 of this chapter. The test weight for a fuel economy data vehicle will be that test weight specified by the Administrator from the test weights covered by that vehicle configuration. The Administrator will base his selection of a test weight on the
relative projected sales volumes of the various test weights within the vehicle configuration.

(e) Vehicle preconditioning. The Highway Fuel Economy Dynamometer Procedure is designed to be performed immediately following the Federal Emission Test Procedure, §§86.127 through 86.138 of this chapter. When conditions allow, the tests should be scheduled in this sequence. In the event the tests cannot be scheduled within three hours of the Federal Emission Test Procedure (including one hour hot soak evaporative loss test, if applicable) the vehicle should be preconditioned as in paragraph (e) (1) or (2) of this section, as applicable.

(1) If the vehicle has experienced more than three hours of soak (68 °F–86 °F) since the completion of the Federal Emission Test Procedure, or has experienced periods of storage outdoors, or in environments where soak temperature is not controlled to 68 °F–86 °F, the vehicle must be preconditioned by operation on a dynamometer through one cycle of the EPA Urban Dynamometer Driving Schedule, §86.115 of this chapter.

(2) In unusual circumstances where additional preconditioning is desired by the manufacturer, the provisions of §86.132(a)(3) of this chapter apply.

(f) Highway fuel economy dynamometer procedure. (1) The dynamometer procedure consists of two cycles of the Highway Fuel Economy Driving Schedule (§600.109(b)) separated by 15 seconds of idle. The first cycle of the Highway Fuel Economy Driving Schedule is driven to precondition the test vehicle and the second is driven for the fuel economy measurement.

(2) The provisions of paragraphs (b), (c), (e), (f), (g) and (h) of §86.135 Dynamometer procedure of this chapter, apply for highway fuel economy testing.

(3) Only one exhaust sample and one background sample are collected and analyzed for hydrocarbons (except diesel hydrocarbons which are analyzed continuously), carbon monoxide, and carbon dioxide. Methanol and formaldehyde samples (exhaust and dilution air) are collected and analyzed for methanol-fueled vehicles (measurement of methanol and formaldehyde may be omitted for 1993 through 1994 model year methanol-fueled vehicles provided a HFID calibrated on methanol is used for measuring HC plus methanol).

(4) The fuel economy measurement cycle of the test includes two seconds of idle indexed at the beginning of the second cycle and two seconds of idle indexed at the end of the second cycle.

(g) Engine starting and restarting. (1) If the engine is not running at the initiation of the highway fuel economy test (preconditioning cycle), the start-up procedure must be according to the manufacturer’s recommended procedures.

(2) False starts and stalls during the preconditioning cycle must be treated as in 40 CFR 86.136 (d) and (e). If the vehicle stalls during the measurement cycle of the highway fuel economy test, the test is voided, corrective action may be taken according to 40 CFR 86.079–25 or 40 CFR 86.1834–01 as applicable, and the vehicle may be rescheduled for test. The person taking the corrective action shall report the action so that the test records for the vehicle contain a record of the action.

(h) Dynamometer test run. The following steps must be taken for each test:

(1) Place the drive wheels of the vehicle on the dynamometer. The vehicle may be driven onto the dynamometer.

(2) Open the vehicle engine compartment cover and position the cooling fans(s) required. Manufacturers may request the use of additional cooling fans for additional engine compartment or under-vehicle cooling and for controlling high tire or brake temperatures during dynamometer operation.

(3) Preparation of the CVS must be performed before the measurement highway driving cycle.

(4) Equipment preparation. The provisions of §86.137(b)(3) through (6) of this chapter apply for highway fuel economy test except that only one exhaust sample collection bag and one dilution air sample collection bag need be connected to the sample collection systems.

(5) Operate the vehicle over one Highway Fuel Economy Driving Schedule cycle according to the dynamometer driving schedule specified in §600.109(b).
(6) When the vehicle reaches zero speed at the end of the preconditioning cycle, the driver has 17 seconds to prepare for the emission measurement cycle of the test. Reset and enable the roll revolution counter.

(7) Operate the vehicle over one Highway Fuel Economy Driving Schedule cycle according to the dynamometer driving schedule specified in §600.109(b) while sampling the exhaust gas.

(8) Sampling must begin two seconds before beginning the first acceleration of the fuel economy measurement cycle and must end two seconds after the end of the deceleration to zero. At the end of the deceleration to zero speed, the roll or shaft revolutions must be recorded.

(i) For methanol dual fuel automobiles, the procedures of §600.111 (a) and (b) shall be performed for each of the required test fuels:

(1) Gasoline or diesel fuel as specified in §600.107 (a) and (b); and

(2) Methanol fuel as specified in §600.107 (c) and (d); and

(3) A mixture containing 50% gasoline or diesel and 50% methanol by volume, applicable during model years 1993 through 1995; or

(4) In lieu of testing using the mixture containing 50% gasoline or diesel and 50% methanol by volume, the manufacturer must provide a written statement attesting that the equal or superior energy efficiency is attained while using the 50% gasoline or diesel and 50% methanol mixture compared to using gasoline.

The exhaust sample analysis analysis must be performed according to §86.240 of this chapter, as applicable.


§ 600.112–08 Exhaust sample analysis.

The exhaust sample analysis must be performed according to §86.140 or §86.240 of this chapter, as applicable.

[71 FR 77935, Dec. 27, 2006]

§ 600.112–78 Exhaust sample analysis.

The exhaust sample analysis must be performed according to §86.140 of this chapter.

The Administrator will use the calculation procedure set forth in this paragraph for all official EPA testing of vehicles fueled with gasoline, diesel, alcohol-based or natural gas fuel. The calculations of the weighted fuel economy values require input of the weighted grams/mile values for total hydrocarbons (HC), carbon monoxide (CO), and carbon dioxide (CO₂); and, additionally for methanol-fueled automobiles, methanol (CH₃OH) and formaldehyde (HCHO); and additionally for natural gas-fueled vehicles non-methane hydrocarbons (NMHC) and methane (CH₄) for the FTP, HFET, US06, SC03 and cold temperature FTP tests. Additionally, the specific gravity, carbon weight fraction and net heating value of the test fuel must be determined. The FTP, HFET, US06, SC03 and cold temperature FTP fuel economy values shall be calculated as specified in this section. An example appears in appendix II of this part.

(a) Calculate the FTP fuel economy.

(1) Calculate the weighted grams/mile values for the FTP test for HC, CO and CO₂ and, additionally for methanol-fueled automobiles, CH₃OH and HCHO; and additionally for natural gas-fueled automobiles NMHC and CH₄ as specified in §86.144 of this chapter. Measure and record the test fuel’s properties as specified in paragraph (f) of this section.

(2) Calculate separately the grams/mile values for the cold transient phase, stabilized phase and hot transient phase of the FTP test. For vehicles with more than one source of propulsion energy, one of which is a rechargeable energy storage system, or vehicles with special features that the Administrator determines may have a rechargeable energy source, whose charge can vary during the test, calculate separately the grams/mile values for the cold transient phase, stabilized phase, hot transient phase and hot stabilized phase of the FTP test.

(b) Calculate the HFET fuel economy.

(1) Calculate the mass values for the highway fuel economy test for HC, CO and CO₂, and where applicable CH₃OH,