§ 268.41 Treatment standards expressed as concentrations in waste extract.

For the requirements previously found in this section and for treatment standards in Table CCWE—Constituent Concentrations in Waste Extracts, refer to §268.40.

[59 FR 48103, Sept. 19, 1994]

§ 268.42 Treatment standards expressed as specified technologies.

NOTE: For the requirements previously found in this section in Table 2—Technology-Based Standards By RCRA Waste Code, and Table 3—Technology-Based Standards for Specific Radioactive Hazardous Mixed Waste, refer to §268.40.

(a) The following wastes in the table in §268.40 “Treatment Standards for Hazardous Wastes,” for which standards are expressed as a treatment method rather than a concentration level, must be treated using the technology or technologies specified in the table entitled “Technology Codes and Description of Technology-Based Standards” in this section.

TABLE 1—Technology Codes and Description of Technology-Based Standards

<table>
<thead>
<tr>
<th>Technology code</th>
<th>Description of technology-based standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADGAS</td>
<td>Venting of compressed gases into an absorbing or reacting media (i.e., solid or liquid)—venting can be accomplished through physical release utilizing valves/piping; physical penetration of the container; and/or penetration through detonation.</td>
</tr>
<tr>
<td>AMLGM</td>
<td>Amalgamation of liquid, elemental mercury contaminated with radioactive materials utilizing inorganic reagents such as copper, zinc, nickel, gold, and sulfur that result in a nonliquid, semi-solid amalgam and thereby reducing potential emissions of elemental mercury vapors to the air.</td>
</tr>
<tr>
<td>BIODG</td>
<td>Biodegradation of organics or non-metallic inorganics (i.e., degradable inorganics that contain the elements of phosphorus, nitrogen, and sulfur) in units operated under either aerobic or anaerobic conditions such that a surrogate compound or indicator parameter has been substantially reduced in concentration in the residuals. (e.g., Total Organic Carbon can often be used as an indicator parameter for the biodegradation of many organic constituents that cannot be directly analyzed in wastewater residues).</td>
</tr>
<tr>
<td>CARBIN</td>
<td>Carbon adsorption (granulated or powdered) of non-metallic inorganics, organo-metallics, and/or organic constituents, operated such that a surrogate compound or indicator parameter has not undergone breakthrough (e.g., Total Organic Carbon can often be used as an indicator parameter for the adsorption of many organic constituents that cannot be directly analyzed in wastewater residues). Breakthrough occurs when the carbon has become saturated with the constituent (or indicator parameter) and substantial change in adsorption rate associated with that constituent occurs.</td>
</tr>
<tr>
<td>CHOXD</td>
<td>Chemical or electrolytic oxidation utilizing the following oxidation reagents (or waste reagents) or combinations of reagents: (1) Hypochlorite (e.g., bleach); (2) chlorine; (3) chlorine dioxide; (4) ozone or UV (ultraviolet light) assisted ozone; (5) peroxides; (6) persulfates; (7) peroxides; (8) permangantes; and/or (9) other oxidizing reagents of equivalent efficiency, performed in units operated such that a surrogate compound or indicator parameter has been substantially reduced in concentration in the residuals (e.g., Total Organic Carbon can often be used as an indicator parameter for the oxidation of many organic constituents that cannot be directly analyzed in wastewater residues). Chemical oxidation specifically includes what is commonly referred to as alkaline chlorination.</td>
</tr>
<tr>
<td>CHRED</td>
<td>Chemical reduction utilizing the following reducing reagents (or waste reagents) or combinations of reagents: (1) Sulfur dioxide; (2) sodium, potassium, or alkali salts or sulfites, bisulfites, metabisulfites, and polyethylene glycols (e.g., NaPEG and KPEG); (3) sodium hydrosulfide; (4) ferrous salts; and/or (5) other reducing reagents of equivalent efficiency, performed in units operated such that a surrogate compound or indicator parameter has been substantially reduced in concentration in the residuals (e.g., Total Organic Halogens can often be used as an indicator parameter for the reduction of many halogenated organic constituents that cannot be directly analyzed in wastewater residues). Chemical reduction is commonly used for the reduction of hexavalent chromium to the trivalent state.</td>
</tr>
<tr>
<td>CMBST</td>
<td>High temperature organic destruction technologies, such as combustion in incinerators, boilers, or industrial furnaces operated in accordance with the applicable requirements of 40 CFR part 264, subpart O, or 40 CFR part 265, subpart O, or 40 CFR part 266, subpart H, and in other units operated in accordance with applicable technical operating requirements; and certain non-combustive technologies, such as the Catalytic Extraction Process.</td>
</tr>
<tr>
<td>DEACT</td>
<td>Deactivation to remove the hazardous characteristics of a waste due to its ignitability, corrosivity, and/or reactivity.</td>
</tr>
<tr>
<td>FSUBS</td>
<td>Fuel substitution in units operated in accordance with applicable technical operating requirements.</td>
</tr>
<tr>
<td>HLVIT</td>
<td>Vitrification of high level mixed radioactive wastes in units in compliance with all applicable radioactive protection requirements under control of the Nuclear Regulatory Commission.</td>
</tr>
<tr>
<td>IMERC</td>
<td>Incineration of wastes containing organics and mercury in units operated in accordance with the technical operating requirements of 40 CFR part 264 subpart O and part 265 subpart O. All wastewater and nonwastewater residues derived from this process must then comply with the corresponding treatment standards per waste code with consideration of any applicable subcategories (e.g., High or Low Mercury Subcategories).</td>
</tr>
<tr>
<td>INCIN</td>
<td>Incineration in units operated in accordance with the technical operating requirements of 40 CFR part 264 subpart O and part 265 subpart O.</td>
</tr>
</tbody>
</table>
TABLE 1—TECHNOLOGY CODES AND DESCRIPTION OF TECHNOLOGY-BASED STANDARDS—Continued

<table>
<thead>
<tr>
<th>Technology code</th>
<th>Description of technology-based standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLEXT</td>
<td>Liquid-liquid extraction (often referred to as solvent extraction) of organics from liquid wastes into an immiscible solvent for which the hazardous constituents have a greater solvent affinity, resulting in an extract high in organics that must undergo either incineration, reuse as a fuel, or other recovery/reuse and a raffinate (extracted liquid waste) proportionately low in organics that must undergo further treatment as specified in the standard.</td>
</tr>
<tr>
<td>MACRO</td>
<td>Macroencapsulation with surface coating materials such as polymeric organics (e.g., resins and plastics) or with a jacket of inert inorganic materials to substantially reduce surface exposure to potential leaching media. Macroencapsulation specifically does not include any material that would be classified as a tank or container according to 40 CFR 260.10.</td>
</tr>
<tr>
<td>NEUTR</td>
<td>Neutralization with the following reagents (or waste reagents) or combinations of reagents: (1) Acids; (2) bases; or (3) water (including wastewaters) resulting in a pH greater than 2 but less than 12.5 as measured in the aqueous residuals.</td>
</tr>
<tr>
<td>NLDBR</td>
<td>No land disposal based on recycling.</td>
</tr>
<tr>
<td>POLYM</td>
<td>Formation of complex high-molecular weight solids through polymerization of monomers in high-TOC D001 non-wastewaters which are chemical components in the manufacture of plastics.</td>
</tr>
<tr>
<td>PRECP</td>
<td>Chemical precipitation of metals and other inorganics as insoluble precipitates of oxides, hydroxides, carbonates, sulfides, sulfates, chlorides, fluorides, or phosphates. The following reagents (or waste reagents) are typically used alone or in combination: (1) Lime (i.e., containing oxides and/or hydroxides of calcium and/or magnesium); (2) caustic (i.e., sodium and/or potassium hydroxides); (3) soda ash (i.e., sodium carbonate); (4) sodium sulfide; (5) ferric sulfate or ferric chloride; (6) alum; or (7) sodium sulfate. Additional flocculating, coagulation or similar reagents/processes that enhance sludge dewatering characteristics are not precluded from use.</td>
</tr>
<tr>
<td>RBERY</td>
<td>Thermal recovery of Beryllium.</td>
</tr>
<tr>
<td>RCORR</td>
<td>Recovery of acids or bases utilizing one or more of the following recovery technologies: (1) Distillation (i.e., thermal concentration); (2) resin or solid adsorption; (4) reverse osmosis; and/or (5) incineration for the recovery of acid—Note: this does not preclude the use of other physical phase separation or concentration techniques such as decantation, filtration (including ultrafiltration), and centrifugation, when used in conjunction with the above listed recovery technologies.</td>
</tr>
<tr>
<td>RLEAD</td>
<td>Retorting or roasting in a thermal processing unit capable of volatilizing mercury and subsequently condensing the volatilized mercury for recovery. The retorting or roasting unit (or facility) must be subject to one or more of the following: (a) a National Emissions Standard for Hazardous Air Pollutants (NESHAP) for mercury; (b) a Best Available Control Technology (BACT) or a Lowest Achievable Emission Rate (LAER) standard for mercury imposed pursuant to a Prevention of Significant Deterioration (PSD) permit; or (c) a state permit that establishes emission limitations (within meaning of section 302 of the Clean Air Act) for mercury. All wastewater and nonwastewater residues derived from this process must then comply with the corresponding treatment standards per waste code with consideration of any applicable subcategories (e.g., High or Low Mercury Subcategories).</td>
</tr>
<tr>
<td>RMETL</td>
<td>Recovery of metals or inorganics utilizing one or more of the following direct physical/removal technologies: (1) Ion exchange; (2) resin or solid (i.e., zeolites) adsorption; (3) reverse osmosis; (4) chelation/solvent extraction; (5) freeze crystallization; (6) ultrafiltration and/or (7) simple precipitation (i.e., crystallization)—Note: This does not preclude the use of other physical phase separation or concentration techniques such as decantation, filtration (including ultrafiltration), and centrifugation, when used in conjunction with the above listed recovery technologies.</td>
</tr>
<tr>
<td>RORGs</td>
<td>Recovery of organics utilizing one or more of the following technologies: (1) Distillation; (2) thin film evaporation; (3) steam stripping; (4) carbon adsorption; (5) critical fluid extraction; (6) liquid-liquid extraction; (7) precipitation/crystalization (including freeze crystallization); or (8) chemical phase separation techniques (i.e., addition of acids, bases, demulsifiers, or similar chemicals)—Note: this does not preclude the use of other physical phase separation techniques such as decantation, filtration (including ultrafiltration), and centrifugation, when used in conjunction with the above listed recovery technologies.</td>
</tr>
<tr>
<td>RTHRM</td>
<td>Thermal recovery of metals or inorganics from nonwastewaters in units identified as industrial furnaces according to 40 CFR 260.10 (1), (6), (7), (11), and (12) under the definition of "industrial furnaces".</td>
</tr>
<tr>
<td>RZINC</td>
<td>Rsmelting in high temperature metal recovery units for the purpose of recovery of zinc.</td>
</tr>
<tr>
<td>STABL</td>
<td>Stabilization with the following reagents (or waste reagents) or combinations of reagents: (1) Portland cement; or (2) lime/pozzolans (e.g., fly ash and cement kiln dust)—this does not preclude the addition of reagents (e.g., iron salts, silicates, and clays) designed to enhance the set/cure time and/or compressive strength, or to overall reduce the leachability of the metal or inorganic.</td>
</tr>
<tr>
<td>SSTRP</td>
<td>Steam stripping of organics from liquid wastes utilizing direct application of steam to the wastes operated such that liquid and vapor flow rates, as well as temperature and pressure ranges, have been optimized, monitored, and maintained. These operating parameters are dependent upon the design parameters of the unit, such as the number of separation stages and the internal column design, thus, resulting in a condensed extract high in organics that must undergo either incineration, reuse as a fuel, or other recovery/reuse and an extracted wastewater that must undergo further treatment as specified in the standard.</td>
</tr>
<tr>
<td>VTD</td>
<td>Vacuum thermal desorption of low-level radioactive hazardous mixed waste in units in compliance with all applicable radioactive protection requirements under control of the Nuclear Regulatory Commission.</td>
</tr>
<tr>
<td>WETOX</td>
<td>Wet air oxidation performed in units operated such that a surrogate compound or indicator parameter has been substantially reduced in concentration in the residuals (e.g., Total Organic Carbon can often be used as an indicator parameter for the oxidation of many organic constituents that cannot be directly analyzed in waste-water residues).</td>
</tr>
</tbody>
</table>
TABLE 1—TECHNOLOGY CODES AND DESCRIPTION OF TECHNOLOGY-BASED STANDARDS—Continued

<table>
<thead>
<tr>
<th>Technology code</th>
<th>Description of technology-based standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>WTRRX:</td>
<td>Controlled reaction with water for highly reactive inorganic or organic chemicals with precautionary controls for protection of workers from potential violent reactions as well as precautionary controls for potential emissions of toxic/ignitable levels of gases released during the reaction.</td>
</tr>
</tbody>
</table>

NOTE 1: When a combination of these technologies (i.e., a treatment train) is specified as a single treatment standard, the order of application is specified in §268.42, Table 2 by indicating the five letter technology code that must be applied first, then the designation "fb." (an abbreviation for "followed by"), then the five letter technology code for the technology that must be applied next, and so on.

NOTE 2: When more than one technology (or treatment train) are specified as alternative treatment standards, the five letter technology codes (or the treatment trains) are separated by a semicolon (;) with the last technology preceded by the word "OR." This indicates that any one of these BDAT technologies or treatment trains can be used for compliance with the standard.

(b) Any person may submit an application to the Administrator demonstrating that an alternative treatment method can achieve a measure of performance equivalent to that achieved by methods specified in paragraphs (a), (c), and (d) of this section for wastes or specified in Table 1 of §268.45 for hazardous debris. The applicant must submit information demonstrating that his treatment method is in compliance with federal, state, and local requirements and is protective of human health and the environment. On the basis of such information and any other available information, the Administrator may approve the use of the alternative treatment method if he finds that the alternative treatment method provides a measure of performance equivalent to that achieved by methods specified in paragraphs (a), (c), and (d) of this section for wastes or in Table 1 of §268.45 for hazardous debris. Any approval must be stated in writing and may contain such provisions and conditions as the Administrator deems appropriate. The person to whom such approval is issued must comply with all limitations contained in such a determination.

(c) As an alternative to the otherwise applicable subpart D treatment standards, lab packs are eligible for land disposal provided the following requirements are met:

1. The lab packs comply with the applicable provisions of 40 CFR 264.316 and 40 CFR 265.316;
2. The lab pack does not contain any of the wastes listed in Appendix IV to part 268;
3. The lab packs are incinerated in accordance with the requirements of 40 CFR part 264, subpart O or 40 CFR part 265, subpart O; and
4. Any incinerator residues from lab packs containing D004, D005, D006, D007, D008, D010, and D011 are treated in compliance with the applicable treatment standards specified for such wastes in subpart D of this part.

(d) Radioactive hazardous mixed wastes are subject to the treatment standards in §268.40. Where treatment standards are specified for radioactive mixed wastes in the Table of Treatment Standards, those treatment standards will govern. Where there is no specific treatment standard for radioactive mixed waste, the treatment standard for the hazardous waste (as designated by EPA waste code) applies. Hazardous debris containing radioactive waste is subject to the treatment standards specified in §268.45.

§268.43 Treatment standards expressed as waste concentrations.

For the requirements previously found in this section and for treatment standards in Table CCW—Constituent Concentrations in Wastes, refer to §268.40.

§268.44 Variance from a treatment standard.

(a) Based on a petition filed by a generator or treater of hazardous waste, the Administrator may approve a variance from an applicable treatment standard if: