waste residues, contaminated containment system components, contaminated subsoils, and structures and equipment contaminated with waste, and manage them as hazardous waste unless §261.3(d) of this chapter applies. The closure plan, closure activities, cost estimates for closure, and financial responsibility for magazines or units must meet all of the requirements specified in subparts G and H of this part, except that the owner or operator may defer closure of the unit as long as it remains in service as a munitions or explosives magazine or storage unit.

(b) If, after removing or decontaminating all residues and making all reasonable efforts to effect removal or decontamination of contaminated components, subsoils, structures, and equipment as required in paragraph (a) of this section, the owner or operator finds that not all contaminated subsoils can be practically removed or decontaminated, he or she must close the facility and perform post-closure care in accordance with the closure and post-closure requirements that apply to landfills (§264.310).

APPENDIX I TO PART 264—RECORDKEEPING INSTRUCTIONS

The recordkeeping provisions of §264.73 specify that an owner or operator must keep a written operating record at his facility. This appendix provides additional instructions for keeping portions of the operating record. See §264.73(b) for additional recordkeeping requirements.

The following information must be recorded, as it becomes available, and maintained in the operating record until closure of the facility in the following manner:

Records of each hazardous waste received, treated, stored, or disposed of at the facility which include the following:

1. A description by its common name and the EPA Hazardous Waste Number(s) from part 261 of this chapter which apply to the waste. The waste description also must include the waste’s physical form, i.e., liquid, sludge, solid, or contained gas. If the waste is not listed in part 261, subpart D, of this chapter, the description also must include the process that produced it (for example, solid filter cake from production of --, EPA Hazardous Waste Number W051).

Each hazardous waste listed in part 261, subpart D, of this chapter, and each hazardous waste characteristic defined in part 261, subpart C, of this chapter, has a four-digit EPA Hazardous Waste Number assigned to it. This number must be used for recordkeeping and reporting purposes. Where a hazardous waste contains more than one listed hazardous waste, or where more than one hazardous waste characteristic applies to the waste, the waste description must include all applicable EPA Hazardous Waste Numbers.

(2) The estimated or manifest-reported weight, or volume and density, where applicable, in one of the units of measure specified in Table 1:

<table>
<thead>
<tr>
<th>Unit of measure</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallons</td>
<td>G</td>
</tr>
<tr>
<td>Gallons per Hour</td>
<td>E</td>
</tr>
<tr>
<td>Gallons per Day</td>
<td>U</td>
</tr>
<tr>
<td>Liters</td>
<td>L</td>
</tr>
<tr>
<td>Liters per Hour</td>
<td>H</td>
</tr>
<tr>
<td>Liters per Day</td>
<td>V</td>
</tr>
<tr>
<td>Short Tons per Hour</td>
<td>D</td>
</tr>
<tr>
<td>Metric Tons per Day</td>
<td>N</td>
</tr>
<tr>
<td>Pounds per Hour</td>
<td>S</td>
</tr>
<tr>
<td>Kilograms per Hour</td>
<td>R</td>
</tr>
<tr>
<td>Cubic Yards</td>
<td>Y</td>
</tr>
<tr>
<td>Cubic Meters</td>
<td>C</td>
</tr>
<tr>
<td>Acres</td>
<td>A</td>
</tr>
<tr>
<td>Hectares</td>
<td>Q</td>
</tr>
<tr>
<td>Hectare-meter</td>
<td>F</td>
</tr>
<tr>
<td>Blu’s per Hour</td>
<td>I</td>
</tr>
<tr>
<td>Pounds</td>
<td>P</td>
</tr>
<tr>
<td>Short tons</td>
<td>T</td>
</tr>
<tr>
<td>Kilograms</td>
<td>K</td>
</tr>
<tr>
<td>Tons</td>
<td>M</td>
</tr>
</tbody>
</table>

* Single digit symbols are used here for data processing purposes.

(3) The method(s) (by handling code(s) as specified in Table 2) and date(s) of treatment, storage, or disposal.

Table 2—Handling Codes for Treatment, Storage and Disposal Methods

Enter the handling code(s) listed below that most closely represents the technique(s) used at the facility to treat, store or dispose of each quantity of hazardous waste received.

1. Storage

S01 Container (barrel, drum, etc.)
S02 Tank
S03 Waste Pile
S04 Surface Impoundment
S05 Drip Pad
S06 Containment Building (Storage)
S99 Other Storage (specify)

2. Treatment

(a) Thermal Treatment—
T06 Liquid injection incinerator
T07 Rotary kiln incinerator
T08 Fluidized bed incinerator
T09 Multiple hearth incinerator
<table>
<thead>
<tr>
<th>Code</th>
<th>Treatment Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>T10</td>
<td>Infrared furnace incinerator</td>
</tr>
<tr>
<td>T11</td>
<td>Molten salt destructor</td>
</tr>
<tr>
<td>T12</td>
<td>Pyrolysis</td>
</tr>
<tr>
<td>T13</td>
<td>Wet air oxidation</td>
</tr>
<tr>
<td>T14</td>
<td>Calcination</td>
</tr>
<tr>
<td>T15</td>
<td>Microwave discharge</td>
</tr>
<tr>
<td>T18</td>
<td>Other (specify)</td>
</tr>
<tr>
<td></td>
<td>(b) Chemical Treatment —</td>
</tr>
<tr>
<td>T19</td>
<td>Absorption mound</td>
</tr>
<tr>
<td>T20</td>
<td>Absorption field</td>
</tr>
<tr>
<td>T21</td>
<td>Chemical fixation</td>
</tr>
<tr>
<td>T22</td>
<td>Chemical oxidation</td>
</tr>
<tr>
<td>T23</td>
<td>Chemical precipitation</td>
</tr>
<tr>
<td>T24</td>
<td>Chemical reduction</td>
</tr>
<tr>
<td>T25</td>
<td>Chlorination</td>
</tr>
<tr>
<td>T26</td>
<td>Chlorinolysis</td>
</tr>
<tr>
<td>T27</td>
<td>Cyanide destruction</td>
</tr>
<tr>
<td>T28</td>
<td>Degradation</td>
</tr>
<tr>
<td>T29</td>
<td>Detoxification</td>
</tr>
<tr>
<td>T30</td>
<td>Ion exchange</td>
</tr>
<tr>
<td>T31</td>
<td>Neutralization</td>
</tr>
<tr>
<td>T32</td>
<td>Ozonation</td>
</tr>
<tr>
<td>T33</td>
<td>Photolysis</td>
</tr>
<tr>
<td>T34</td>
<td>Other (specify)</td>
</tr>
<tr>
<td></td>
<td>(c) Physical Treatment —</td>
</tr>
<tr>
<td></td>
<td>(1) Separation of components:</td>
</tr>
<tr>
<td>T35</td>
<td>Centrifugation</td>
</tr>
<tr>
<td>T36</td>
<td>Clarification</td>
</tr>
<tr>
<td>T37</td>
<td>Coagulation</td>
</tr>
<tr>
<td>T38</td>
<td>Decanting</td>
</tr>
<tr>
<td>T39</td>
<td>Encapsulation</td>
</tr>
<tr>
<td>T40</td>
<td>Filtration</td>
</tr>
<tr>
<td>T41</td>
<td>Flocculation</td>
</tr>
<tr>
<td>T42</td>
<td>Flotation</td>
</tr>
<tr>
<td>T43</td>
<td>Foaming</td>
</tr>
<tr>
<td>T44</td>
<td>Sedimentation</td>
</tr>
<tr>
<td>T45</td>
<td>Thickening</td>
</tr>
<tr>
<td>T46</td>
<td>Ultrafiltration</td>
</tr>
<tr>
<td>T47</td>
<td>Other (specify)</td>
</tr>
<tr>
<td></td>
<td>(2) Removal of Specific Components:</td>
</tr>
<tr>
<td>T48</td>
<td>Absorption-molecular sieve</td>
</tr>
<tr>
<td>T49</td>
<td>Activated carbon</td>
</tr>
<tr>
<td>T50</td>
<td>Blending</td>
</tr>
<tr>
<td>T51</td>
<td>Catalysis</td>
</tr>
<tr>
<td>T52</td>
<td>Crystallization</td>
</tr>
<tr>
<td>T53</td>
<td>Dialysis</td>
</tr>
<tr>
<td>T54</td>
<td>Distillation</td>
</tr>
<tr>
<td>T55</td>
<td>Electrolysis</td>
</tr>
<tr>
<td>T56</td>
<td>Electrolysis</td>
</tr>
<tr>
<td>T57</td>
<td>Evaporation</td>
</tr>
<tr>
<td>T58</td>
<td>High gradient magnetic separation</td>
</tr>
<tr>
<td>T59</td>
<td>Leaching</td>
</tr>
<tr>
<td>T60</td>
<td>Liquid ion exchange</td>
</tr>
<tr>
<td>T61</td>
<td>Liquid-liquid extraction</td>
</tr>
<tr>
<td>T62</td>
<td>Reverse osmosis</td>
</tr>
<tr>
<td>T63</td>
<td>Solvent recovery</td>
</tr>
<tr>
<td>T64</td>
<td>Stripping</td>
</tr>
<tr>
<td>T65</td>
<td>Sand filter</td>
</tr>
<tr>
<td>T66</td>
<td>Other (specify)</td>
</tr>
<tr>
<td></td>
<td>(d) Biological Treatment —</td>
</tr>
<tr>
<td>T67</td>
<td>Activated sludge</td>
</tr>
<tr>
<td>T68</td>
<td>Aerobic lagoon</td>
</tr>
<tr>
<td>T69</td>
<td>Aerobic tank</td>
</tr>
<tr>
<td></td>
<td>(e) Boilers and Industrial Furnaces</td>
</tr>
<tr>
<td>T70</td>
<td>Anaerobic tank</td>
</tr>
<tr>
<td>T71</td>
<td>Composting</td>
</tr>
<tr>
<td>T72</td>
<td>Septic tank</td>
</tr>
<tr>
<td>T73</td>
<td>Spray irrigation</td>
</tr>
<tr>
<td>T74</td>
<td>Thickening filter</td>
</tr>
<tr>
<td>T75</td>
<td>Trickling filter</td>
</tr>
<tr>
<td>T76</td>
<td>Waste stabilization pond</td>
</tr>
<tr>
<td>T77</td>
<td>Other (specify)</td>
</tr>
<tr>
<td>T78</td>
<td>Designated as a landfill</td>
</tr>
<tr>
<td>T79</td>
<td>Other Industrial Furnaces Listed in 40 CFR 260.10 (specify)</td>
</tr>
<tr>
<td>T80</td>
<td>Boiler</td>
</tr>
<tr>
<td>T81</td>
<td>Cement Kiln</td>
</tr>
<tr>
<td>T82</td>
<td>Lime Kiln</td>
</tr>
<tr>
<td>T83</td>
<td>Aggregate Kiln</td>
</tr>
<tr>
<td>T84</td>
<td>Phosphate Kiln</td>
</tr>
<tr>
<td>T85</td>
<td>Coke Oven</td>
</tr>
<tr>
<td>T86</td>
<td>Blast Furnace</td>
</tr>
<tr>
<td>T87</td>
<td>Smelting, Melting, or Refining Furnace</td>
</tr>
<tr>
<td>T88</td>
<td>Titanium Dioxide Chloride Process Oxidation Reactor</td>
</tr>
<tr>
<td>T89</td>
<td>Methane Reforming Furnace</td>
</tr>
<tr>
<td>T90</td>
<td>Pulping Liquor Recovery Furnace</td>
</tr>
<tr>
<td>T91</td>
<td>Combustion Device Used in the Recovery of Sulfur Values from Spent Sulfuric Acid</td>
</tr>
<tr>
<td>T92</td>
<td>Halogen Acid Furnaces</td>
</tr>
<tr>
<td>T93</td>
<td>Other Industrial Furnaces Listed in 40 CFR 260.10 (specify)</td>
</tr>
<tr>
<td>T94</td>
<td>Containment Building (Treatment)</td>
</tr>
<tr>
<td></td>
<td>(f) Other Treatment</td>
</tr>
<tr>
<td></td>
<td>T94</td>
</tr>
<tr>
<td></td>
<td>3. Disposal</td>
</tr>
<tr>
<td>D79</td>
<td>Underground Injection</td>
</tr>
<tr>
<td>D80</td>
<td>Landfill</td>
</tr>
<tr>
<td>D81</td>
<td>Land Treatment</td>
</tr>
<tr>
<td>D82</td>
<td>Ocean Disposal</td>
</tr>
<tr>
<td>D83</td>
<td>Surface Impoundment (to be closed as a landfill)</td>
</tr>
<tr>
<td>D99</td>
<td>Other Disposal (specify)</td>
</tr>
<tr>
<td></td>
<td>(g) Other Subpart X</td>
</tr>
<tr>
<td>X01</td>
<td>Open Burning/Open Detonation</td>
</tr>
<tr>
<td>X02</td>
<td>Mechanical Processing</td>
</tr>
<tr>
<td>X03</td>
<td>Thermal Unit</td>
</tr>
<tr>
<td>X04</td>
<td>Geologic Repository</td>
</tr>
<tr>
<td>X99</td>
<td>Other Subpart X (specify)</td>
</tr>
</tbody>
</table>

APPENDICES II–III TO PART 264

APPENDIX IV TO PART 264—COCHRAN’S APPROXIMATION TO THE BEHRENS- \ FISHER STUDENTS’ T-TEST

Using all the available background data \((n_b\) readings), calculate the background mean \((\bar{X}_b)\) and background variance \((s^2_b)\). For the single monitoring well under investigation \((n_m\) reading), calculate the monitoring mean \((\bar{X}_m)\) and monitoring variance \((s^2_m)\). For any set of data \((X_1, X_2, \ldots, X_n)\) the mean is calculated by: