Density, \(\text{Density of fluorinated heat transfer fluid } \text{i (kg/l)} \),

\[I_i = \text{Inventory of fluorinated heat transfer fluid } \text{i in containers other than equipment at the beginning of the reporting year (in stock or storage)} \text{i} \).

\[P_i = \text{Acquisitions of fluorinated heat transfer fluid } \text{i during the reporting year (l), including amounts purchased from chemical suppliers, amounts purchased from equipment suppliers with or inside of equipment, and amounts returned to the facility after off-site recycling.} \]

\[N_i = \text{Total nameplate capacity (full and proper charge) of equipment that uses fluorinated heat transfer fluid } \text{i and that is newly installed during the reporting year (l).} \]

\[R_i = \text{Total nameplate capacity (full and proper charge) of equipment that uses fluorinated heat transfer fluid } \text{i and that is removed from service during the reporting year (l).} \]

\[I_{iE} = \text{Inventory of fluorinated heat transfer fluid } \text{i in containers other than equipment at the end of the reporting year (in stock or storage)} \text{i}. \]

\[D_i = \text{Disbursements of fluorinated heat transfer fluid } \text{i during the reporting year, including amounts returned to chemical suppliers, sold with or inside of equipment, and sent off-site for verifiable recycling or destruction (l). Disbursements should include only amounts that are properly stored and transported so as to prevent emissions in transit.} \]

\[0.001 = \text{Conversion factor from kg to metric tons.} \]

\[i = \text{Heat transfer fluid.} \]

§ 98.94 Monitoring and QA/QC requirements.

(a) For calendar year 2011 monitoring, you may follow the provisions in paragraphs (a)(1) through (a)(3) of this section for best available monitoring methods.

1. Best available monitoring methods.

From January 1, 2011 through September 30, 2011, owners or operators may use best available monitoring methods for any parameter that cannot reasonably be measured according to the monitoring and QA/QC requirements of this subpart. The owner or operator must use the calculation methodologies and equations in §98.93, but may use the best available monitoring method for any parameter for which it is not reasonably feasible to acquire, install, or operate a required piece of monitoring equipment in a facility, or to procure necessary measurement services by January 1, 2011. Starting no later than October 1, 2011, the owner or operator must discontinue using best available monitoring methods and begin following all applicable monitoring and QA/QC requirements of this part, except as provided in paragraphs (a)(2), (a)(3), or (a)(4) of this section.

Best available monitoring methods means any of the following methods specified in this paragraph:

(i) Monitoring methods currently used by the facility that do not meet the specifications of this subpart.

(ii) Supplier data.

(iii) Engineering calculations.

(iv) Other company records.

(2) Requests for extension of the use of best available monitoring methods in 2011 for parameters other than recipe-specific utilization and by-product formation rates for the plasma etching process type. With respect to any provision of this subpart except §98.93(a)(2)(ii)(A), the owner or operator may submit a request to the Administrator under this paragraph (a)(2) to use one or more best available monitoring methods to estimate emissions that occur between July 1, 2011 and December 31, 2011.

(i) Timing of request. The extension request must be submitted to EPA no later than February 28, 2011.

(ii) Content of request. Requests must contain the following information:

(A) A list of specific items of monitoring instrumentation and measuring services for which the request is being made and the locations where each piece of monitoring instrumentation will be installed and where each measurement service will be provided.

(B) Identification of the specific rule requirements for which the instrumentation or measurement service is needed.

(C) A description of the reasons why the needed equipment could not be obtained, installed, or operated or why the needed measurement service could not be provided before July 1, 2011.

(D) If the reason for the extension is that the equipment cannot be purchased, delivered, or installed before
July 1, 2011, include supporting documentation such as the date the monitoring equipment was ordered, investigation of alternative suppliers, and the dates by which alternative vendors promised delivery or installation, backorder notices or unexpected delays, descriptions of actions taken to expedite delivery or installation, and the current expected date of delivery or installation.

(E) If the reason for the extension is that service providers were unable to provide necessary measurement services, include supporting documentation demonstrating that these services could not be acquired before July 1, 2011. This documentation must include written correspondence to and from at least three service providers stating that they will not be available to provide the necessary services before July 1, 2011.

(F) A detailed description of the specific best available monitoring methods that the facility will use in place of the required methods.

(G) A description of the specific actions the owner or operator will take to comply with monitoring requirements by January 1, 2012.

(iii) Approval criteria. To obtain approval, the owner or operator must demonstrate to the Administrator’s satisfaction that by July 1, 2011, it is not reasonably feasible to acquire, install, or operate the required piece of monitoring equipment, or procure necessary measurement services to comply with the requirements of this subpart. As a condition for allowing the use of best available monitoring methods through July 1, 2011, facilities must recalculate and resubmit their 2011 estimated emissions using the requirements of this subpart. The facility’s recalculated emissions must be reported with its report for the 2012 reporting year (to be submitted in 2013) unless the facility receives an additional extension under paragraph (a)(4) of this section.

(3) Requests for extension of the use of best available monitoring methods in 2011 for recipe-specific utilization and by-product formation rates for the plasma etching process type under §98.93(a)(2)(ii)(A). The owner or operator may submit a request to the Administrator under this paragraph (a)(3) to use one or more best available monitoring methods to estimate emissions that occur between October 1, 2011 and December 31, 2011 for recipe-specific utilization and by-product formation rates for the etching process type under §98.93(a)(2)(ii)(A).

(i) Timing of request. The extension request must be submitted to EPA no later than September 30, 2011.

(ii) Content of request. Requests must contain the following information:

(B) A description of the specific actions the owner or operator will take to comply with monitoring requirements by January 1, 2012.

(iii) Approval criteria. To obtain approval, the owner or operator must demonstrate to the Administrator’s satisfaction that by December 31, 2011 it is not reasonably feasible to acquire, install, or operate the required piece of monitoring equipment or procure necessary measurement services to comply with the requirements of this subpart. As a condition for allowing the use of best available monitoring methods through December 31, 2011, facilities must recalculate and resubmit their 2011 estimated emissions using the requirements of this subpart. The facility’s recalculated emissions must be reported with its report for the 2012 reporting year (to be submitted in 2013) unless the facility receives an additional extension under paragraph (a)(4) of this section.

(4) Requests for extension of the use of best available monitoring methods beyond 2011. EPA does not anticipate approving the use of best available monitoring methods beyond December 31, 2011; however, EPA reserves the right to approve any such requests submitted for unique and extreme circumstances, which include safety.
technical infeasibility, or inconsistency with other local, State or Federal regulations.

(i) Timing of request. The extension request must be submitted to EPA no later than September 30, 2011.

(ii) Content of request. Requests must contain the following information:
 (A) A list of parameters for which the owner or operator is seeking use of best available monitoring methods beyond 2011.
 (B) A description of the specific rule requirements that the owner or operator cannot meet, including a detailed explanation as to why the requirements can not be met.
 (C) Detailed description of the unique circumstances necessitating an extension, including specific data collection issues that do not meet safety regulations, technical infeasibility, or specific laws or regulations that conflict with data collection.
 (D) A detailed explanation and supporting documentation of how and when the owner or operator will receive the required data and/or services to comply with the reporting requirements of this subpart in the future.
 (E) A detailed description of the specific best available monitoring methods that the facility will use in place of the required methods.
 (F) The Administrator reserves the right to require that the owner or operator provide additional documentation.

(iii) Approval criteria. To obtain approval, the owner or operator must demonstrate to the Administrator’s satisfaction that by December 31, 2011 (or in the case of facilities that are required to calculate and report emissions in accordance with §98.93(a)(2)(i)(A), December 31, 2012), it is not reasonably feasible to acquire, install, or operate the required piece of monitoring equipment according to the requirements of this subpart. As a condition for allowing the use of best available monitoring methods through December 31, 2012, facilities must recalculate and resubmit their 2012 estimated emissions using the requirements of this subpart. Where a facility is allowed to use best available monitoring methods for apportioning gas consumption under §98.94(c), it is not required to verify its 2012 engineering model with its recalcualted report. The facility’s recalculated emissions must be reported with its report for the 2013 reporting year (to be submitted in 2014).

(b) For purposes of Equation I–12 of this subpart, you must estimate facility-wide gas-specific heel factors for each container type for each gas used, except for fluorinated GHGs or N2O which your facility uses in quantities less than 50 kg in one reporting year, according to the procedures in paragraphs (b)(1) through (b)(5) of this section.

(1) Base your facility-wide gas-specific heel factors on the trigger point for change out of a container for each container size and type for each gas used. Facility-wide gas-specific heel factors must be expressed as the ratio of the trigger point for change out, in terms of mass, to the initial mass in the container, as determined by paragraphs (b)(2) and (b)(3) of this section.

(2) The trigger points for change out you use to calculate facility-wide gas-specific heel factors in §98.94(b)(1) must be determined by monitoring the mass or the pressure of your containers. If you monitor the pressure, convert the pressure to mass using the ideal gas law, as displayed in Equation I–17 of this subpart, with the appropriate Z value selected based upon the properties of the gas.

\[pV = ZnRT \quad \text{(Eq. I-17)} \]

Where:
- \(p \) = Absolute pressure of the gas (Pa).
- \(V \) = Volume of the gas (m³).
- \(Z \) = Compressibility factor.
- \(n \) = Amount of substance of the gas (moles).
- \(R \) = Gas constant (8.314 Joule/Kelvin mole).
- \(T \) = Absolute temperature (K).

(3) The initial mass you use to calculate a facility-wide gas-specific heel factor in §98.94(b)(1) may be based on the weight of the gas provided to you.
in gas supplier documents; however, you remain responsible for the accuracy of these masses and weights under this subpart.

(4) If a container is changed in an exceptional circumstance, you must weigh that container or measure the pressure of that container with a pressure gauge, in place of using a heel factor to determine the residual weight of gas. An exceptional circumstance is a change out point that differs by more than 20 percent from the trigger point for change out used to calculate your facility-wide gas-specific heel factor for that gas and container type. When using mass-based trigger points for change out, you must determine if an exceptional circumstance has occurred based on the net weight of gas in the container, excluding the tare weight of the container.

(5) You must re-calculate a facility-wide gas-specific heel factor if you use a trigger point for change out for a gas and container type that differs by more than 5 percent from the previously used trigger point for change out for that gas and container type.

(c) You must develop apportioning factors for fluorinated GHG and N$_2$O consumption to use in Equation I–13 of this subpart for each input gas i, as appropriate, using a facility-specific engineering model that is documented in your site GHG Monitoring Plan as required under §98.3(g)(5). This model must be based on a quantifiable metric, such as wafer passes or wafer starts. To verify your model, you must demonstrate its precision and accuracy by adhering to the requirements in paragraphs (c)(1) and (c)(2) of this section.

(1) You must demonstrate that the fluorinated GHG and N$_2$O apportioning factors are developed using calculations that are repeatable, as defined in §98.98.

(2) You must demonstrate the accuracy of your facility-specific model by comparing the actual amount of input gas i consumed and the modeled amount of input gas i consumed for the plasma etching and chamber cleaning process types, as follows:

(i) You must analyze at least a 30-day period of operation during which the capacity utilization equals or exceeds 60 percent of its design capacity. In the event your facility operates below 60 percent of its design capacity during the reporting year, you must use the period during which the facility experiences its highest 30-day average utilization for model verification.

(ii) You must compare the actual gas consumed of input gas i to the modeled gas consumed of input gas i for one fluorinated GHG reported under this subpart under the plasma etching process type and the chamber cleaning process type. You must certify that the fluorinated GHGs selected for comparison correspond to the largest quantities, on a mass basis, of fluorinated GHGs used at your facility during the reporting year for the plasma etching process type and the chamber cleaning process type.

(iii) You must demonstrate that the comparison performed for the largest quantity of gas, on a mass basis, consumed under the plasma etching process type in paragraph (c)(2)(ii) of this section, does not result in a difference between the actual and modeled gas consumption that exceeds five percent relative to actual gas consumption, reported to one significant figure using standard rounding conventions.

(d) If you use factors for fluorinated GHG process utilization and by-product formation rates other than the defaults provided in Tables I–3, I–4, I–5, I–6, and I–7 to this subpart, you must use utilization and by-product formation rates that are developed with measurements made using the International SEMATECH #06124825A–ENG (incorporated by reference, see §98.7). You may use recipe-specific utilization and by-product formation rates that were measured using the International SEMATECH #01104197A–XFR (incorporated by reference, see §98.7), provided the measurements were made prior to January 1, 2007. You may use recipe-specific utilization and by-product formation rates measured by a third party, such as a manufacturing equipment supplier, if the conditions in paragraphs (d)(1) and (d)(2) of this section are met.

(1) The third party has measured recipe-specific utilization and by-product formation rates using the International SEMATECH #00124825A–ENG (incorporated by reference, see §98.7,).
or the International SEMATECH #01104197A–XFR (incorporated by reference, see §98.7), provided the measurements were made prior to January 1, 2007.

(2) Measurements made by a third party to develop recipe-specific utilization and by-product formation rates must have been made for recipes that are similar recipes to those used at your facility, as defined in §98.98.

(e) If you use N\textsubscript{2}O utilization factors other than the defaults provided in Table I–8 to this subpart, you must use factors developed with measurements made using the International SEMATECH #06124825A–ENG (incorporated by reference, see §98.7). You may use measurements made using the International SEMATECH #01104197A–XFR (incorporated by reference, see §98.7) provided the measurements were made prior to January 1, 2007. You may use N\textsubscript{2}O utilization factors measured by a third party, such as a manufacturing equipment supplier, if the conditions in paragraphs (e)(1) and (e)(2) of this section are met.

(1) The third party has measured N\textsubscript{2}O utilization factors using the International SEMATECH #06124825A–ENG (incorporated by reference, see §98.7). You may use measurements made using the International SEMATECH #01104197A–XFR (incorporated by reference, see §98.7) provided the measurements were made prior to January 1, 2007. You may use N\textsubscript{2}O utilization factors measured by a third party, such as a manufacturing equipment supplier, if the conditions in paragraphs (e)(1) and (e)(2) of this section are met.

(2) The conditions under which the measurements were made are representative of your facility’s N\textsubscript{2}O emitting production processes.

(f) If your facility employs abatement systems and you wish to reflect emission reductions due to these systems in calculations in §98.93, you must adhere to the procedures in paragraphs (f)(1) and (f)(2) of this section. If you use the default destruction or removal efficiency of 60 percent, you must adhere to procedures in paragraph (f)(3) of this section. If you use either a properly measured destruction or removal efficiency as defined in §98.98, or a class average of properly measured destruction or removal efficiencies during a reporting year, you must adhere to procedures in paragraph (f)(4) of this section.

(1) You must certify and document that the abatement systems are properly installed, operated, and maintained according to manufacturers’ specifications by adhering to the procedures in paragraphs (f)(1) and (f)(2) of this section.

(2) You must calculate and report the uptime of abatement systems using Equation I–15 of this subpart.

(3) To report emissions using the default destruction or removal efficiency of 60 percent, you must certify and document that the abatement systems at your facility are specifically designed for fluorinated GHG and N\textsubscript{2}O abatement.

(4) If you do not use the default destruction or removal efficiency value to calculate and report controlled emissions, you must use either a properly measured destruction or removal efficiency, or a class average of properly measured destruction or removal efficiencies, determined in accordance with procedures in paragraphs (f)(4)(i) through (f)(4)(v) of this section.

(i) A properly measured destruction or removal efficiency value must be determined in accordance with EPA 430–R–10–003 (incorporated by reference, see §98.7).

(ii) You must annually select and properly measure the destruction or removal efficiency for a random sample of abatement systems to include in a random sampling abatement system testing program (RSASTP) in accordance with procedures in paragraphs (f)(4)(ii)(A) and (f)(4)(ii)(B) of this section.

(A) Each reporting year for each abatement system class a random sample of three or 20 percent of installed abatement systems, whichever is greater, must be tested. If 20 percent of the total number of abatement systems in each class does not equate to a whole number, the number of systems to be tested must be determined by rounding up to the nearest integer.
§ 98.95 Procedures for estimating missing data.

(a) Except as provided in paragraph (b) of this section, a complete record of all measured parameters used in the fluorinated GHG and N\textsubscript{2}O emissions calculations in §98.93 and §98.94 is required.

(b) If you use heat transfer fluids at your facility and are missing data for one or more of the parameters in Equation I–16 of this subpart, you must estimate heat transfer fluid emissions.