§ 98.354 Monitoring and QA/QC requirements.

(a) For calendar year 2011 monitoring, the facility may submit a request to the Administrator to use one or more best available monitoring methods as listed in § 98.3(d)(1)(i) through (iv). The request must be submitted no later than October 12, 2010 and must contain the information in § 98.3(d)(2)(ii). To obtain approval, the request must demonstrate to the Administrator's satisfaction that it is not reasonably feasible to acquire, install, and operate a required piece of monitoring equipment by January 1, 2011. The use of best available monitoring methods will not be approved beyond December 31, 2011.

(b) You must determine the concentration of organic material in wastewater treated anaerobically using analytical methods for COD or BOD$_5$ specified in 40 CFR 136.3 Table 1B. For the purpose of determining concentrations of wastewater influent to the anaerobic wastewater treatment process, samples may be diluted to the concentration range of the approved method, but the calculated concentration of the undiluted wastewater must be used for calculations and reporting required by this subpart.

(c) You must collect samples representing wastewater influent to the anaerobic wastewater treatment process, following all preliminary and primary treatment steps (e.g., after grit removal, primary clarification, oil-water separation, dissolved air flotation, or similar solids and oil separation processes). You must collect and analyze samples for COD or BOD$_5$ concentration once each calendar week that the anaerobic wastewater treatment process is operating, with at least three days between measurements. You must collect a sample that represents the average COD or BOD$_5$ concentration of the waste stream over a 24-hour sampling period.

(d) You must measure the flowrate of wastewater entering anaerobic wastewater treatment process once each calendar week for which you collect samples analyzed for COD or BOD$_5$ concentration. The flow measurement location must correspond to the location used to collect samples analyzed for COD or BOD$_5$ concentration. You must measure the flowrate using one of the methods specified in paragraphs (d)(1) through (d)(5) of this section or as specified by the manufacturer.

(e) All wastewater flow measurement devices must be calibrated prior to the first year of reporting and recalibrated either biennially (every 2 years) or at the minimum frequency specified by the manufacturer. Wastewater flow...
measurement devices must be calibrated using the procedures specified by the device manufacturer.

(f) For each anaerobic process (such as anaerobic reactor, digester, or lagoon) from which biogas is recovered, you must continuously measure the gas flow rate as specified in paragraph (h) of this section and determine the cumulative volume of gas recovered as specified in Equation II–4 of this subpart. You must also determine the CH$_4$ concentration of the recovered biogas as specified in paragraph (g) of this section at a location near or representative of the location of the gas flow meter. You must determine CH$_4$ concentration either continuously or intermittently. If you determine the concentration intermittently, you must determine the concentration at least once each calendar week that the cumulative biogas flow measured as specified in paragraph (h) of this section is greater than zero, with at least three days between measurements. As specified in §98.353(c) and paragraph (h) of this section, you must also determine temperature, pressure, and moisture content as necessary to accurately determine the gas flow rate and CH$_4$ concentration. You must determine temperature and pressure if the gas flow meter or gas composition monitor do not automatically correct for temperature or pressure. You must measure moisture content of the recovered biogas if the gas flow rate is measured on a wet basis and the CH$_4$ concentration is measured on a dry basis.

(g) For each anaerobic process (such as an anaerobic reactor, digester, or lagoon) from which biogas is recovered, operate, maintain, and calibrate a gas composition monitor capable of measuring the concentration of CH$_4$ in the recovered biogas using one of the methods specified in paragraphs (g)(1) through (g)(6) of this section or as specified by the manufacturer.

(1) Method 18 at 40 CFR part 60, appendix A-6.

(2) ASTM D1945–03, Standard Test Method for Analysis of Natural Gas by Gas Chromatography (incorporated by reference, see §98.7).

(3) ASTM D1946–90 (Reapproved 2006), Standard Practice for Analysis of Reformed Gas by Gas Chromatography (incorporated by reference, see §98.7).

(4) GPA Standard 2261–00, Analysis for Natural Gas and Similar Gaseous Mixtures by Gas Chromatography (incorporated by reference, see §98.7).

(5) ASTM D539–97 Refinery Gas Analysis by Gas Chromatography (incorporated by reference, see §98.7).

(6) As an alternative to the gas chromatography methods provided in paragraphs (g)(1) through (g)(5) of this section, you may use total gaseous organic concentration analyzers and calculate the CH$_4$ concentration following the requirements in paragraphs (g)(6)(i) through (g)(6)(iii) of this section.

(i) Use Method 25A or 25B at 40 CFR part 60, appendix A–7 to determine total gaseous organic concentration. You must calibrate the instrument with CH$_4$ and determine the total gaseous organic concentration as carbon (or as CH$_4$; K=1 in Equation 25A–1 of Method 25A at 40 CFR part 60, appendix A–7).

(ii) Determine a non-methane organic carbon correction factor at the routine sampling location no less frequently than once a reporting year following the requirements in paragraphs (g)(6)(ii)(A) through (g)(6)(ii)(C) of this section.

(A) Take a minimum of three grab samples of the biogas with a minimum of 20 minutes between samples and determine the methane composition of the biogas using one of the methods specified in paragraphs (g)(1) through (g)(5) of this section.

(B) As soon as practical after each grab sample is collected and prior to the collection of a subsequent grab sample, determine the total gaseous organic concentration of the biogas using either Method 25A or 25B at 40 CFR part 60, appendix A–7 as specified in paragraph (g)(6)(i) of this section.

(C) Determine the arithmetic average methane concentration and the arithmetic average total gaseous organic concentration of the samples analyzed according to paragraphs (g)(6)(i)(A) and (g)(6)(ii)(B) of this section, respectively, and calculate the non-methane...
organic carbon correction factor as the ratio of the average methane concentration to the average total gaseous organic concentration. If the ratio exceeds 1, use 1 for the non-methane organic carbon correction factor.

(iii) Calculate the CH$_4$ concentration as specified in Equation II–8 of this section.

$$ C_{CH4} = f_{NMOC} \times C_{TGOC} \quad \text{(Eq. II-8)} $$

Where:

- C_{CH4} = Methane (CH$_4$) concentration in the biogas (volume %) for use in Equation II–4 of this subpart.
- f_{NMOC} = Non-methane organic carbon correction factor from the most recent determination of the non-methane organic carbon correction factor as specified in paragraph (g)(6)(ii) of this section (unitless).
- C_{TGOC} = Total gaseous organic carbon concentration measured using Method 25A or 25B at 40 CFR part 60, appendix A–7 during routine monitoring of the biogas (volume %).

(h) For each anaerobic process (such as an anaerobic reactor, digester, or lagoon) from which biogas is recovered, install, operate, maintain, and calibrate a gas flow meter capable of continuously measuring the volumetric flow rate of the recovered biogas using one of the methods specified in paragraphs (h)(1) through (h)(8) of this section or as specified by the manufacturer. Recalibrate each gas flow meter either biennially (every 2 years) or at the minimum frequency specified by the manufacturer. Except as provided in §98.353(c)(2)(iii), each gas flow meter must be capable of correcting for the temperature and pressure, and, if necessary, moisture content.

(8) Method 2A or 2D at 40 CFR part 60, appendix A–1.

(i) All temperature, pressure, and moisture content monitors required as specified in paragraph (f) of this section must be calibrated using the procedures and frequencies where specified by the device manufacturer, if not specified use an industry accepted or industry standard practice.

(j) All equipment (temperature, pressure, and moisture content monitors and gas flow meters and gas composition monitors) must be maintained as specified by the manufacturer.

(k) If applicable, the owner or operator must document the procedures used to ensure the accuracy of measurements of COD or BOD$_5$ concentration, wastewater flow rate, gas flow rate, gas composition, temperature, pressure, and moisture content. These procedures include, but are not limited to, calibration of gas flow meters, and other measurement devices. The estimated accuracy of measurements made with these devices must also be recorded, and the technical basis for these estimates must be documented.

§ 98.355 Procedures for estimating missing data.

A complete record of all measured parameters used in the GHG emissions calculations is required. Therefore, whenever a quality-assured value of a required parameter is unavailable (e.g., if a meter malfunctions during unit operation or if a required sample is not taken), a substitute data value for the missing parameter must be used in the calculations, according to the following requirements in paragraphs (a) through (c) of this section: