Where:

- \(CH_4 \) = Annual methane emissions from storage tanks (metric tons/year).
- \(Q_{un} \) = Quantity of unstabilized crude oil received at the facility (MMbbl/year).
- \(AP \) = Pressure differential from the previous storage pressure to atmospheric pressure (pounds per square inch, psi).
- \(MF_{CH4} \) = Average mole fraction of \(CH_4 \) in vent gas from the unstabilized crude oil storage tanks from facility measurements (kg-mole \(CH_4 \)/kg-mole gas); use 0.27 as a default if measurement data are not available.
- \(995,000 \) = Correlation Equation factor (scf gas per MMbbl per psi).
- \(16 \) = Molecular weight of \(CH_4 \) (kg/kg-mole).
- \(MVC \) = Molar volume conversion factor (849.5 scf/kg-mole at 68 °F and 14.7 psia or 836.6 scf/kg-mole at 60 °F and 14.7 psia).
- \(0.001 \) = Conversion factor (metric ton/kg).

(Eq. Y-23)

\[
CH_4 = (995,000 \times Q_{un} \times AP) \times MF_{CH4} \times \frac{16}{MVC} \times 0.001
\]

§ 98.254 Monitoring and QA/QC requirements.

(a) Fuel flow meters, gas composition monitors, and heating value monitors that are associated with sources that use a CEMS to measure CO\(_2\) emissions according to subpart C of this part or that are associated with stationary combustion sources must meet the applicable monitoring and QA/QC requirements in §98.34.

(b) All gas flow meters, gas composition monitors, and heating value monitors that are used to provide data for the GHG emissions calculations in this subpart for sources other than those subject to the requirements in paragraph (a) of this section shall be calibrated according to the procedures specified by the manufacturer, or according to the procedures in the applicable methods specified in paragraphs (c) through (g) of this section. In the case of gas flow meters, all gas flow meters must meet the calibration accuracy requirements in §98.3(i). All gas flow meters, gas composition monitors, and heating value monitors must be recalibrated at the applicable frequency specified in paragraph (b)(1) or (b)(2) of this section.

(1) You must recalibrate each gas flow meter according to one of the following frequencies. You may recalibrate at the minimum frequency specified by the manufacturer, biennially (every two years), or at the interval specified by the industry consensus standard practice used.

(2) You must recalibrate each gas composition monitor and heating value monitor according to one of the following frequencies. You may recalibrate at the minimum frequency specified by the manufacturer, annually, or at the interval specified by the industry standard practice used.

(c) For flare or sour gas flow meters and gas flow meters used to comply with the requirements in §98.253(j), operate, calibrate, and maintain the flow meter according to one of the following. You may use the procedures...
Environmental Protection Agency § 98.254

(d) Except as provided in paragraph (g) of this section, determine gas composition and, if required, average molecular weight of the gas using any of the following methods. Alternatively, the results of chromatographic analysis of the fuel may be used, provided that the gas chromatograph is operated, maintained, and calibrated according to the manufacturer’s instructions; and the methods used for operation, maintenance, and calibration of the gas chromatograph are documented in the written Monitoring Plan for the unit under §98.3(g)(5).

(1) Method 18 at 40 CFR part 60, appendix A–6.

(2) ASTM D1945–03 Standard Test Method for Analysis of Natural Gas by Gas Chromatography (incorporated by reference, see §98.7).

(3) ASTM D1946–90 (Reapproved 2006) Standard Practice for Analysis of Reformed Gas by Gas Chromatography (incorporated by reference, see §98.7).

(4) GPA 2261–00 Analysis for Natural Gas and Similar Gaseous Mixtures by Gas Chromatography (incorporated by reference, see §98.7).

(5) UOP539–97 Refinery Gas Analysis by Gas Chromatography (incorporated by reference, see §98.7).

(e) Determine flare gas higher heating value using any of the following methods. Alternatively, the results of chromatographic analysis of the fuel may be used, provided that the gas chromatograph is operated, maintained, and calibrated according to the manufacturer’s instructions; and the methods used for operation, maintenance, and calibration of the gas chromatograph are documented in the written Monitoring Plan for the unit under §98.3(g)(5).

(1) ASTM D4809–06 Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter (Precision Method) (incorporated by reference, see §98.7).

(f) For gas flow meters used to comply with the requirements in §98.253(c)(2)(ii), install, operate, calibrate, and maintain each gas flow meter according to the requirements in 40 CFR 63.1572(c) and the following requirements.

(1) Locate the flow monitor at a site that provides representative flow rates. Avoid locations where there is swirling flow or abnormal velocity distributions.
due to upstream and downstream disturbances.

(2) [Reserved]

(3) Use a continuous monitoring system capable of correcting for the temperature, pressure, and moisture content to output flow in dry standard cubic feet (standard conditions as defined in § 98.6).

(g) For exhaust gas CO₂/CO/O₂ composition monitors used to comply with the requirements in § 98.253(c)(2), install, operate, calibrate, and maintain exhaust gas composition monitors according to the requirements in 40 CFR 60.105a(b)(2) or 40 CFR 63.1572(c) or according to the manufacturer’s specifications and requirements.

(h) Determine the mass of petroleum coke as required by Equation Y–13 of this subpart using mass measurement equipment meeting the requirements for commercial weighing equipment as described in Specifications, Tolerances, and Other Technical Requirements For Weighing and Measuring Devices, NIST Handbook 44 (2009) (incorporated by reference, see § 98.7). Calibrate the measurement device according to the procedures specified by the manufacturer. Recalibrate either biennially or at the minimum frequency specified by the manufacturer.

(i) Determine the carbon content of petroleum coke as required by Equation Y–13 of this subpart using any one of the following methods. Calibrate the measurement device according to the procedures specified by the method or procedures specified by the measurement device manufacturer.

3. ASTM D5373–08 Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal (incorporated by reference, see § 98.7).

(j) Determine the quantity of petroleum process streams using company records. These quantities include the quantity of asphalt blown, quantity of crude oil plus the quantity of intermediate products received from off site, and the quantity of unstabilized crude oil received at the facility.

(k) The owner or operator shall document the procedures used to ensure the accuracy of the estimates of fuel usage, gas composition, and heating value including but not limited to calibration of weighing equipment, fuel flow meters, and other measurement devices. The estimated accuracy of measurements made with these devices shall also be recorded, and the technical basis for these estimates shall be provided.

§ 98.255 Procedures for estimating missing data.

A complete record of all measured parameters used in the GHG emissions calculations is required (e.g., concentrations, flow rates, fuel heating values, carbon content values). Therefore, whenever a quality-assured value of a required parameter is unavailable (e.g., if a CEMS malfunctions during unit operation or if a required fuel sample is not taken), a substitute data value for the missing parameter shall be used in the calculations.

(a) For stationary combustion sources, use the missing data procedures in subpart C of this part.

(b) For each missing value of the heat content, carbon content, or molecular weight of the fuel, substitute the arithmetic average of the quality-assured values of that parameter immediately preceding and immediately following the missing data incident. If the “after” value is not obtained by the end of the reporting year, you may use the “before” value for the missing data substitution. If, for a particular parameter, no quality-assured data are available prior to the missing data incident, the substitute data value shall be the first quality-assured value obtained after the missing data period.

(c) For missing CO₂, CO, O₂, CH₄, or N₂O concentrations, gas flow rate, and percent moisture, the substitute data