%H₂O = Hourly moisture percentage in the stack gas.

(iii) You must calculate a site-specific emission factor for the process in metric tons of CO₂ per metric ton of feed or production, as applicable, by dividing the average hourly CO₂ emission rate during the test by the average hourly feed or production rate during the test.

(iv) You must calculate CO₂ emissions for the process by multiplying the emission factor by the total amount of feed or production, as applicable, for the reporting period.

(c) You must determine emissions of CO₂ from the coke pushing process in mtCO₂ by multiplying the metric tons of coal charged to the coke ovens during the reporting period by 0.008.

(d) If GHG emissions from a taconite indurating furnace, basic oxygen furnace, non-recovery coke oven battery, sinter process, EAF, decarburization vessel, or direct reduction furnace are vented through the same stack as any combustion unit or process equipment that reports CO₂ emissions using a CEMS that complies with the Tier 4 Calculation Methodology in subpart C of this part (General Stationary Fuel Combustion Sources), then the calculation methodology in paragraph (b) of this section shall not be used to calculate process emissions. The owner or operator shall report under this subpart the combined stack emissions according to the Tier 4 Calculation Methodology in §98.33(a)(4) and all associated requirements for Tier 4 in subpart C of this part (General Stationary Fuel Combustion Sources).


§98.174 Monitoring and QA/QC requirements.

(a) If you operate and maintain a CEMS that measures CO₂ emissions consistent with subpart C of this part, you must meet the monitoring and QA/QC requirements of §98.34(c).

(b) If you determine CO₂ emissions using the carbon mass balance procedure in §98.173(b)(1), you must:

(1) Except as provided in paragraph (b)(4) of this section, determine the mass of each process input and output other than fuels using the same plant instruments or procedures that are used for accounting purposes (such as weigh hoppers, belt weigh feeders, weighed purchased quantities in shipments or containers, combination of bulk density and volume measurements, etc.), record the totals for each process input and output for each calendar month, and sum the monthly mass to determine the annual mass for each process input and output. Determine the mass rate of fuels using the procedures for combustion units in §98.34.

(2) Except as provided in paragraph (b)(4) of this section, determine the carbon content of each process input and output annually for use in the applicable equations in §98.173(b)(1) based on analyses provided by the supplier or by the average carbon content determined by collecting and analyzing at least three samples each year using the standard methods specified in paragraphs (b)(2)(i) through (b)(2)(vi) of this section as applicable.

(i) ASTM C25–06, Standard Test Methods for Chemical Analysis of Limestone, Quicklime, and Hydrated Lime (incorporated by reference, see §98.7) for limestone, dolomite, and slag.

(ii) ASTM D5373–08 Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal (incorporated by reference, see §98.7) for coal, coke, and other carbonaceous materials.

(iii) ASTM E1915–07a, Standard Test Methods for Analysis of Metal Bearing Ores and Related Materials by Combustion Infrared-Absorption Spectrometry (incorporated by reference, see §98.7) for iron ore, taconite pellets, and other iron-bearing materials.


(v) ASM CS–104 UNS No. G10460—Alloy Digest April 1985 (Carbon Steel of Medium Carbon Content) (incorporated by reference, see §98.7); ISO/TR 15349–1:1998, Unalloyed steel—Determination of low carbon content, Part 1: Infrared absorption method after combustion in

(vi) For each process input that is a fuel, determine the carbon content and molecular weight (if applicable) using the applicable methods listed in §98.34.

(3) For solid ferrous materials charged to basic oxygen process furnaces or EAFs that differ in carbon content, you may determine a weighted average carbon content based on the carbon content of each type of ferrous material and the average weight percent of each type that is used. Examples of these different ferrous materials include carbon steel, low carbon steel, stainless steel, high alloy steel, pig iron, iron scrap, and direct reduced iron.

(4) If you document that a specific process input or output contributes less than one percent of the total mass of carbon into or out of the process, you do not have to determine the monthly mass or annual carbon content of that input or output.

(5) Except as provided in paragraph (b)(4) of this section, you must determine the annual carbon content and monthly mass rate of any input or output that contains carbon that is not listed in the equations in §98.173(b)(1) using the procedures in paragraphs (b)(1) and (b)(2) of this section.

(c) If you determine CO₂ emissions using the site-specific emission factor procedure in §98.173(b)(2), you must:

(1) Conduct an annual performance test that is based on representative performance (i.e., performance based on normal operating conditions) of the affected process.

(2) For the furnace exhaust from basic oxygen furnaces, EAFs, decarburization vessels, and direct reduction furnaces, sample the furnace exhaust for at least three complete production cycles that start when the furnace is being charged and end after steel or iron and slag have been tapped. For EAFs that produce both carbon steel and stainless or specialty (low carbon) steel, develop an emission factor for the production of both types of steel.

(3) For taconite indurating furnaces, non-recovery coke batteries, and sinter processes, sample for at least 3 hours.

(4) Conduct the stack test using EPA Method 3A at 40 CFR part 60, appendix A–2 to measure the CO₂ concentration, Method 2, 2A, 2C, 2D, or 2F at 40 CFR part 60, appendix A–1 or Method 26 at 40 CFR part 60, appendix A–2 to determine the stack gas volumetric flow rate, and Method 4 at 40 CFR part 60, at appendix A–3 to determine the moisture content of the stack gas.

(5) Determine the mass rate of process feed or process production (as applicable) during the test using the same plant instruments or procedures that are used for accounting purposes (such as weigh hoppers, belt weigh feeders, combination of bulk density and volume measurements, etc.)

(6) If your process operates under different conditions as part of normal operations in such a manner that CO₂ emissions change by more than 20 percent (e.g., routine changes in the carbon content of the sinter feed or change in grade of product), you must perform emission testing and develop separate emission factors for these different operating conditions and determine emissions based on the number of hours the process operates and the production or feed rate (as applicable) at each specific different condition.

(7) If your EAF and decarburization vessel exhaust to a common emission control device and stack, you must sample each process in the ducts before the emissions are combined, sample each process when only one process is operating, or sample the combined emissions when both processes are operating and base the site-specific emission factor on the steel production rate of the EAF.

(8) The results of a performance test must include the analysis of samples, determination of emissions, and raw data. The performance test report must contain all information and data used to derive the emission factor.

(d) For a coke pushing process, determine the metric tons of coal charged to the coke ovens and record the totals
§ 98.175 Procedures for estimating missing data.

A complete record of all measured parameters used in the GHG emissions calculations in §98.173 is required. Therefore, whenever a quality-assured value of a required parameter is unavailable, a substitute data value for the missing parameter shall be used in the calculations as specified in the paragraphs (a) and (b) of this section. You must follow the missing data procedures in §98.255(b) of subpart Y (Petroleum Refineries) of this part for flares burning coke oven gas or blast furnace gas. You must document and keep records of the procedures used for all such estimates.

(a) For each missing data for the carbon content of inputs and outputs for facilities that estimate emissions using the carbon mass balance procedure in §98.173(b)(1) or for facilities that estimate emissions using the site-specific emission factor procedure in §98.173(b)(2); 100 percent data availability is required. You must repeat the test for average carbon contents of inputs and outputs according to the procedures in §98.174(b)(2). Similarly, you must repeat the test to determine the site-specific emission factor if data on the CO₂ emission rate, process production rate or process feed rate are missing.

(b) For missing records of the monthly mass or volume of carbon-containing inputs and outputs using the carbon mass balance procedure in §98.173(b)(1), the substitute data value must be based on the best available estimate of the mass of the input or output material from all available process data or data used for accounting purposes.

§ 98.176 Data reporting requirements.

In addition to the information required by §98.3(c), each annual report must contain the information required in paragraphs (a) through (h) of this section for each coke pushing operation; taconite indurating furnace; basic oxygen furnace; non-recovery coke oven battery; sinter process; EAF; decarburization vessel; direct reduction furnace; and flare burning coke oven gas or blast furnace gas. For reporting year 2010, the information required in paragraphs (a) through (h) of this section is not required for decarburization vessels that are not argon-oxygen decarburization vessels. For reporting year 2011 and each subsequent reporting year, the information in paragraphs (a) through (h) of this section must be reported for all decarburization vessels.

(a) Unit identification number and annual CO₂ emissions (in metric tons).

(b) Annual production quantity (in metric tons) for taconite pellets, coke, sinter, iron, and raw steel.

(c) If a CEMS is used to measure CO₂ emissions, then you must report the relevant information required under §98.36 for the Tier 4 Calculation Methodology.

(d) If a CEMS is not used to measure CO₂ emissions, then you must report for each process whether the emissions were determined using the carbon mass balance method in §98.173(b)(1) or the site-specific emission factor method in §98.173(b)(2).

(e) If you use the carbon mass balance method in §98.173(b)(1) to determine CO₂ emissions, you must report the following information for each process:

(1) The carbon content of each process input and output used to determine CO₂ emissions.

(2) Whether the carbon content was determined from information from the supplier or by laboratory analysis, and if by laboratory analysis, the method used.

(3) The annual volume of each type of gaseous fuel (reported separately for each type in standard cubic feet), the annual volume of each type of liquid fuel (reported separately for each type in gallons), and the annual mass (in metric tons) of each other process inputs and outputs used to determine CO₂ emissions.