§ 172.863 Salts of fatty acids.

The food additive salts of fatty acids may be safely used in food and in the manufacture of food components in accordance with the following prescribed conditions:

(a) The additive consists of one or any mixture of two or more of the aluminum, calcium, magnesium, potassium, and sodium salts of the fatty acids conforming with §172.860 and/or oleic acid derived from tall oil fatty acids conforming with §172.862.

(b) The food additive is used or intended for use as a binder, emulsifier, and anticaking agent in food in accordance with good manufacturing practice.

(c) To assure safe use of the additive, the label and labeling of the additive and any premix thereof shall bear, in addition to the other information required by the Act, the following:

(1) The common or usual name of the fatty acid salt or salts contained therein.

(2) The words “food grade,” in juxtaposition with and equally as prominent as the name of the salt.

§ 172.864 Synthetic fatty alcohols.

Synthetic fatty alcohols may be safely used in food and in the synthesis of food components in accordance with the following prescribed conditions:

(a) The food additive consists of any one of the following fatty alcohols:

(1) Hexyl, octyl, decyl, lauryl, myristyl, cetyl, and stearyl; manufactured by fractional distillation of alcohols obtained by a sequence of oxidation, hydrolysis, and catalytic hydrogenation (catalyst consists of copper, chromium, and nickel) of organo-aluminums generated by the controlled reaction of low molecular weight trialkylaluminum with purified ethylene (minimum 99 percent by volume C2H4), and utilizing an external coolant such that these alcohols meet the specifications prescribed in paragraph (a)(1)(i) and (iii) of this section.

(2) n-Octyl; manufactured by the hydrodimerization of 1,3-butadiene, followed by catalytic hydrogenation of the resulting dienol, and distillation to produce n-octyl alcohol with a minimum purity of 99 percent. The analytical method for n-octyl alcohol entitled “Test Method [Normal-octanol]” dated October 2003, and printed by Kuraray Co., Ltd., is incorporated by reference. The Director of the Office of the Federal Register approves this incorporation by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. You may obtain a copy from the Office of Food Additive Safety, 5100 Paint Branch Pkwy., College Park, MD 20740, or you may examine a copy at the Center for Food Safety and Applied Nutrition’s Library, Food and Drug Administration, 5100 Paint Branch Pkwy., College Park, MD 20740, or at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202–741–6030, or go to http://www.archives.gov/federal_register/
(b) The hydrocarbon solvent used in the process described in paragraph (a)(1) of this section is a mixture of liquid hydrocarbons essentially paraffinic in nature, derived from petroleum and refined to meet the specifications described in paragraph (b)(1) of this section when subjected to the procedures described in paragraph (b)(2) and (3) of this section.

(1) The hydrocarbon solvent meets the following specifications:

(i) Boiling-point range: 175 °C–275 °C.

(ii) Ultraviolet absorbance limits as follows:

<table>
<thead>
<tr>
<th>Wavelength (millicrons)</th>
<th>Maximum absorbance per centimeter optical path length</th>
</tr>
</thead>
<tbody>
<tr>
<td>280–289</td>
<td>0.15</td>
</tr>
<tr>
<td>290–299</td>
<td>0.12</td>
</tr>
<tr>
<td>300–399</td>
<td>0.05</td>
</tr>
<tr>
<td>360–400</td>
<td>0.02</td>
</tr>
</tbody>
</table>

(2) Use ASTM method D86–82, “Standard Method for Distillation of Petroleum Products,” which is incorporated by reference, to determine boiling point range. Copies of the material incorporated by reference may be obtained from the American Society for Testing Materials, 100 Barr Harbor Dr., West Conshohocken, Philadelphia, PA 19428-2959, or may be examined at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html.

(3) The analytical method for determining ultraviolet absorbance limits is as follows:

GENERAL INSTRUCTIONS

All glassware should be scrupulously cleaned to remove all organic matter such as oil, grease, detergent residues, etc. Examine all glassware, including stoppers and stopcocks, under ultraviolet light to detect any residual fluorescent contamination. As a precautionary measure, it is recommended practice to rinse all glassware with purified isooctane immediately before use. No grease is to be used on stopcocks or joints. Great care to avoid contamination of hydrocarbon solvents in handling and to assure absence of any extraneous material arising from inadequate packaging is essential. Because some of the polynuclear hydrocarbons sought in this test are very susceptible to photo-oxidation, the entire procedure is to be carried out under subdued light.

APPARATUS

Chromatographic tube. 450 millimeters in length (packing section), inside diameter 19 millimeters ±1 millimeter, equipped with a wad of clean Pyrex brand filtering wool (Corning Glass Works Catalog No. 3950 or equivalent). The tube shall contain a 250-milliliter reservoir and a 2-milliliter tetrafluoroethylene polymer stopcock at the opposite end. Overall length of the tube is 670 millimeters.

Stainless steel rod. 2 feet in length, 2 to 4 millimeters in diameter.

Vacuum oven. Similar to Labline No. 3610 but modified as follows: A copper tube one-fourth inch in diameter and 13 inches in length is bent to a right angle at the 4-inch point and plugged at the opposite end; eight copper tubes one-eighth inch in diameter and 5 inches in length are silver soldered in drilled holes (one-eighth inch in diameter) to the one-fourth-inch tube, one on each side at the 5-, 7.5-, 10- and 12.5-inch points; the one-eighth-inch copper tubes are bent to conform with the inner periphery of the oven.

Reckers. 250-milliliter and 500-milliliter capacity.

Graduated cylinders. 25-milliliter, 50-milliliter, and 100-milliliter capacity.

Tuberculin syringe. 1-milliliter capacity, with 3-inch, 22-gauge needle.

Volumetric flask. 5-milliliter capacity.

Spectrophotometric cells. Fused quartz ground glass stoppered cells, optical path length in the range of 1,000 centimeter ±0.005 centimeter. With distilled water in the cells, determine any absorbance difference.

Spectrophotometer. Spectral range 250 millimicrons–400 millimicrons with spectral slit width of 2 millimicrons or less; under instrument operating conditions for these absorbance measurements, the spectrophotometer shall also meet the following performance requirements:

Absorbance repeatability, ±0.01 at 0.4 absorbance.

Absorbance accuracy, ±0.05 at 0.4 absorbance.

1 As determined by using potassium chromate for reference standard and described in National Bureau of Standards Circular 484, Spectrophotometry, U.S. Department of Commerce, (1949). The accuracy is to be determined by comparison with the standard values at 290, 345, and 400 millimicrons. Circular 484 is incorporated by reference.
§ 172.864

Wavelength repeatability, ±0.2 millimicron.

Wavelength accuracy, ±1.0 millimicron.

Nitrogen cylinder. Water-pumped or equivalent purity nitrogen in cylinder equipped with regulator and valve to control flow at 5 p.s.i.g.

REAGENTS AND MATERIALS

*Organic solvents._ All solvents used throughout the procedure shall meet the specifications and tests described in this specification. The isooctane, benzene, hexane, and 1,2-dichloroethane designated in the list following this paragraph shall pass the following test:

- To the specified quantity of solvent in a 250-milliliter beaker, add 1 milliliter of purified _n_-hexadecane and evaporate in the vacuum oven under a stream of nitrogen. Discontinue evaporation when not over 1 milliliter of residue remains. (To the residue from benzene add a 5-milliliter portion of purified isooctane, reevaporate, and repeat once to insure complete removal of benzene.)

- Dissolve the 1 milliliter of hexadecane residue in isooctane and make to 5 milliliters. Determine the absorbance in the 1-centimeter path length, cells compared to isooctane as reference. The absorbance of the solution of the solvent residue shall not exceed 0.02 per centimeter path length between 300 and 359 millimicron and shall not exceed 0.01 per centimeter path length between 300 and 400 millimicron.

- **Isooctane** (2,2,4-trimethylpentane). Use 10 milliliters for the test described in the preceding paragraph. If necessary, isooctane may be purified by passage through a column of activated silica gel (Grade 12, Davison Chemical Co., Baltimore, Md., or equivalent). Activate the gel at 150 °C for 16 hours, in a 12-inch × 7-inch porcelain pan loose-covered with aluminum foil, cool in a dessicator, transfer to a bottle and seal.

- **Hexane, spectro grade** (Burdick and Jackson Laboratories, Inc., Muskegon, Mich., or equivalent). Use 80 milliliters for the test. If necessary, benzene may be purified by distillation or otherwise.

- **Benzene, spectro grade** (Burdick and Jackson Laboratories, Inc., Muskegon, Mich., or equivalent). Use 650 milliliters for the test. If necessary, hexane may be purified by distillation or otherwise.

- **1,2-Dichloroethane, spectro grade** (Matheson, Coleman, and Bell, East Rutherford, N.J., or equivalent). Use 20 milliliters for test. If necessary, 1,2-dichloroethane may be purified by distillation.

Eluting mixtures:

1. 10 percent 1,2-dichloroethane in hexane. Pipet 100 milliliters of 1,2-dichloroethane into a 1-liter glass-stoppered volumetric flask and adjust to volume with hexane, with mixing.

2. 40 percent benzene in hexane. Pipet 400 milliliters of benzene into a 1-liter glass-stoppered volumetric flask and adjust to volume with hexane, with mixing.

3. 26 percent 1,2-dichloroethane, 40 percent benzene in hexane. Pipet 270 milliliters of 1,2-dichloroethane and 330 milliliters of benzene into the 1-liter volumetric flask and adjust to volume with hexane, with mixing.

4. 20 percent 1,2-dichloroethane, 30 percent benzene in hexane. Pipet 240 milliliters of 1,2-dichloroethane and 360 milliliters of benzene into the 1-liter volumetric flask and adjust to volume with hexane, with mixing.

PROCEDURE

Determination of ultraviolet absorbance. Before proceeding with the analysis of a sample determine the absorbance in a 1-centimeter path cell for the reagent blank by carrying out the procedure without a sample. Record the absorbance in the wavelength range of 280 to 400 millimicrons. Typical reagent blank absorbance in this range should not exceed 0.04 in the 280 to 299 millimicron range, 0.02 in the 300 to 359 millimicron range, and 0.01 in the 360 to 400 millimicron range. If the characteristic benzene peaks in the 250 to 300 millimicron region are present, remove the benzene by the procedure described above under “Reagents and Materials,” “Organic Solvents,” and record absorbance again.

Transfer 50 grams of silica gel to the chromatographic tube for sample analysis. Raise and drop the column on a semisoft, clean surface for about 1 minute to settle the gel. Pour 100 milliliters of hexane into the column with the stopcock open and allow to drain to about one-half inch above the gel. Turn off the stopcock and allow the column to cool for 30 minutes. After cooling, vibrate the column to eliminate air and stir the top 1 to 2 inches with a small diameter stainless steel rod. Take care not to get the gel above the liquid and onto the sides of the column.
§ 172.867 Olestra.

Olestra, as identified in this section, may be safely used in accordance with the following conditions:

(a) Olestra is a mixture of octa-, hepta-, and hexa-esters of sucrose with fatty acids derived from edible fats and oils or fatty acid sources that are generally recognized as safe or approved for use as food ingredients. The chain lengths of the fatty acids are no less than 12 carbon atoms.

(b) Olestra meets the specifications of the Food Chemicals Codex, 4th edition, 1st supplement (1997), pp. 33-35, which is incorporated by reference. The Director of the Office of the Federal Register approves this incorporation by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. You may obtain copies from the National Academy Press, 2101 Constitution Ave. NW., Washington, DC 20418 (Internet address http://www.nap.edu). Copies may be examined at the Center for Food Safety and Applied Nutrition’s Library, Food and Drug Administration, 5100 Paint Branch Pkwy., College Park, MD 20740, or at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html.

§ 172.866 Synthetic glycerin produced by the hydrogenolysis of carbohydrates.

Synthetic glycerin produced by the hydrogenolysis of carbohydrates may be safely used in food, subject to the provisions of this section:

(a) It shall contain not in excess of 0.2 percent by weight of a mixture of butanetriols.

(b) It is used or intended for use in an amount not to exceed that reasonably required to produce its intended effect.

§ 172.867 Olestra.

Olestra, as identified in this section, may be safely used in accordance with the following conditions:

(a) Olestra is a mixture of octa-, hepta-, and hexa-esters of sucrose with fatty acids derived from edible fats and oils or fatty acid sources that are generally recognized as safe or approved for use as food ingredients. The chain lengths of the fatty acids are no less than 12 carbon atoms.

(b) Olestra meets the specifications of the Food Chemicals Codex, 4th edition, 1st supplement (1997), pp. 33-35, which is incorporated by reference. The Director of the Office of the Federal Register approves this incorporation by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. You may obtain copies from the National Academy Press, 2101 Constitution Ave. NW., Washington, DC 20418 (Internet address http://www.nap.edu). Copies may be examined at the Center for Food Safety and Applied Nutrition’s Library, Food and Drug Administration, 5100 Paint Branch Pkwy., College Park, MD 20740, or at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html.

§ 172.867 Olestra.

Olestra, as identified in this section, may be safely used in accordance with the following conditions:

(a) Olestra is a mixture of octa-, hepta-, and hexa-esters of sucrose with fatty acids derived from edible fats and oils or fatty acid sources that are generally recognized as safe or approved for use as food ingredients. The chain lengths of the fatty acids are no less than 12 carbon atoms.

(b) Olestra meets the specifications of the Food Chemicals Codex, 4th edition, 1st supplement (1997), pp. 33-35, which is incorporated by reference. The Director of the Office of the Federal Register approves this incorporation by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. You may obtain copies from the National Academy Press, 2101 Constitution Ave. NW., Washington, DC 20418 (Internet address http://www.nap.edu). Copies may be examined at the Center for Food Safety and Applied Nutrition’s Library, Food and Drug Administration, 5100 Paint Branch Pkwy., College Park, MD 20740, or at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html.