§ 121.193 Airplanes: Turbine engine powered: En route limitations: Two engines inoperative.

(a) Airplanes certificated after August 26, 1957, but before October 1, 1958 (SR 422). No person may operate a turbine engine powered airplane along an intended route unless he complies with either of the following:

1. There is no place along the intended track that is more than 90 minutes (with all engines operating at cruising power) from an airport that meets the requirements of §121.197.

2. Its weight, according to the two-engine-inoperative, en route, net flight path data in the Airplane Flight Manual, allows the airplane to fly from the point where the two engines are assumed to fail simultaneously to an airport that meets the requirements of §121.197, with a net flight path (considering the ambient temperature anticipated along the track) having a positive slope at an altitude of at least 1,000 feet above all terrain and obstructions within five miles on each side of the intended track, or at an altitude of 5,000 feet, whichever is higher.

For the purposes of paragraph (a)(2) of this section, it is assumed that—

1. The engine fails at the most critical point en route;
2. The airplane passes over the critical obstruction, after engine failure at a point that is no closer to the obstruction than the nearest approved radio navigation fix, unless the Administrator authorizes a different procedure based on adequate operational safeguards;
3. An approved method is used to allow for adverse winds;
4. Fuel jettisoning will be allowed if the certificate holder shows that the crew is properly instructed, that the training program is adequate, and that all other precautions are taken to insure a safe procedure;
5. The alternate airport is specified in the dispatch or flight release and meets the prescribed weather minimums; and
6. The consumption of fuel and oil after engine failure is the same as the consumption that is allowed for in the approved net flight path data in the Airplane Flight Manual.

(b) Aircraft certificated after September 30, 1958, but before August 30, 1959 (SR 422A). No person may operate a turbine engine powered airplane along an intended route unless he complies with either of the following:

1. There is no place along the intended track that is more than 90 minutes (with all engines operating at cruising power) from an airport that meets the requirements of §121.197.
2. Its weight, according to the two-engine-inoperative, en route, net flight path data in the Airplane Flight Manual, allows the airplane to fly from the point where the two engines are assumed to fail simultaneously to an airport that meets the requirements of §121.197, with a net flight path (considering the ambient temperatures anticipated along the track) having a positive slope at an altitude of at least 1,000 feet above all terrain and obstructions within 5 miles on each side of the intended track, or at an altitude of 2,000 feet, whichever is higher.

For the purposes of paragraph (b)(2) of this section, it is assumed that the two engines fail at the most critical point en route, that the airplane’s weight at the point where the engines fail includes enough fuel to continue to the airport and to arrive at an altitude of at least 1,000 feet directly over the airport, and that the fuel and oil consumption after engine failure is the same as the consumption allowed for in the net flight path data in the Airplane Flight Manual.

§ 121.197 with a positive slope at 1,000 feet above the airport where the airplane lands after an engine fails, or, if that airplane was certificated after September 30, 1958 (SR 422A, 422B), with a positive slope at 1,500 feet above the airport where the airplane lands after an engine fails.

(b) For the purposes of paragraph (a)(2) of this section, it is assumed that—

1. The engine fails at the most critical point en route;
2. The airplane passes over the critical obstruction, after engine failure at a point that is no closer to the obstruction than the nearest approved radio navigation fix, unless the Administrator authorizes a different procedure based on adequate operational safeguards;
3. An approved method is used to allow for adverse winds;
4. Fuel jettisoning will be allowed if the certificate holder shows that the crew is properly instructed, that the training program is adequate, and that all other precautions are taken to insure a safe procedure;
5. The alternate airport is specified in the dispatch or flight release and meets the prescribed weather minimums; and
6. The consumption of fuel and oil after engine failure is the same as the consumption that is allowed for in the approved net flight path data in the Airplane Flight Manual.


(a) No person operating a turbine engine powered airplane may take off that airplane at such a weight that allowing for normal consumption of fuel and oil in flight to the destination or alternate airport the weight of the airplane on arrival would exceed the landing weight set forth in the Airplane Flight Manual for the elevation of the destination or alternate airport and the ambient temperature anticipated at the time of landing.

(b) Except as provided in paragraph (c), (d), or (e) of this section, no person operating a turbine engine powered airplane may take off that airplane unless its weight on arrival, allowing for normal consumption of fuel and oil in flight (in accordance with the landing distance set forth in the Airplane Flight Manual for the elevation of the destination airport and the wind conditions anticipated there at the time of landing), would allow a full stop landing at the intended destination airport within 60 percent of the effective length of each runway described below from a point 50 feet above the intersection of the obstruction clearance plane and the runway. For the purpose of determining the allowable landing weight at the destination airport the following is assumed:

(1) The airplane is landed on the most favorable runway and in the most favorable direction, in still air.

(2) The airplane is landed on the most suitable runway considering the probable wind velocity and direction and the ground handling characteristics of the airplane, and considering other conditions such as landing aids and terrain.

(c) A turbopropeller powered airplane that would be prohibited from being taken off because it could not meet the requirements of paragraph (b)(2) of this section, may be taken off if an alternate airport is specified that meets all the requirements of this section except that the airplane can accomplish a full stop landing within 70 percent of the effective length of the runway.

(d) Unless, based on a showing of actual operating landing techniques on