§ 27.151

allow satisfactory roll and pitch control with power off.

(Secs. 313(a), 601, 603, 604, and 605 of the Federal Aviation Act of 1958 (49 U.S.C. 1354(a), 1421, 1423, 1424, and 1425); and sec. 6(c) of the Dept. of Transportation Act (49 U.S.C. 1655(c))

§ 27.151 Flight controls.

(a) Longitudinal, lateral, directional, and collective controls may not exhibit excessive breakout force, friction, or preload.

(b) Control system forces and free play may not inhibit a smooth, direct rotorcraft response to control system input.

[Amendment 27–21, 49 FR 44433, Nov. 6, 1984]

§ 27.161 Trim control.

The trim control—

(a) Must trim any steady longitudinal, lateral, and collective control forces to zero in level flight at any appropriate speed; and

(b) May not introduce any undesirable discontinuities in control force gradients.

[Doc. No. 5074, 29 FR 15695, Nov. 24, 1964, as amended by Amdt. 27–21, 49 FR 44433, Nov. 6, 1984]

§ 27.171 Stability: general.

The rotorcraft must be able to be flown, without undue pilot fatigue or strain, in any normal maneuver for a period of time as long as that expected in normal operation. At least three landings and takeoffs must be made during this demonstration.

§ 27.173 Static longitudinal stability.

(a) The longitudinal control must be designed so that a rearward movement of the control is necessary to obtain an airspeed less than the trim speed, and a forward movement of the control is necessary to obtain an airspeed more than the trim speed.

(b) Throughout the full range of altitude for which certification is requested, with the throttle and collective pitch held constant during the maneuvers specified in § 27.175(a) through (d), the slope of the control position versus airspeed curve must be positive. However, in limited flight conditions or modes of operation determined by the Administrator to be acceptable, the slope of the control position versus airspeed curve may be neutral or negative if the rotorcraft possesses flight characteristics that allow the pilot to maintain airspeed within ±5 knots of the desired trim airspeed without exceptional piloting skill or alertness.

[Amendment 27–21, 49 FR 44433, Nov. 6, 1984, as amended by Amdt. No. 27–44, 73 FR 10999, Feb. 29, 2008]

§ 27.175 Demonstration of static longitudinal stability.

(a) Climb. Static longitudinal stability must be shown in the climb condition at speeds from \(V_y - 10 \text{ kt to } V_y + 10 \text{ kt} \) with—

(1) Critical weight;

(2) Critical center of gravity;

(3) Maximum continuous power;

(4) The landing gear retracted; and

(5) The rotorcraft trimmed at \(V_y \).

(b) Cruise. Static longitudinal stability must be shown in the cruise condition at speeds from \(0.8 V_{NE} - 10 \text{ kt to } 0.8 V_{NE} + 10 \text{ kt} \) or, if \(V_H \) is less than \(0.8 V_{NE} \), from \(V_H - 10 \text{ kt to } V_H + 10 \text{ kt} \), with—

(1) Critical weight;

(2) Critical center of gravity;

(3) Power for level flight at \(0.8 V_{NE} \) or \(V_H \), whichever is less;

(4) The landing gear retracted; and

(5) The rotorcraft trimmed at \(0.8 V_{NE} \) or \(V_H \), whichever is less.

(c) \(V_{NE} \). Static longitudinal stability must be shown at speeds from \(V_{NE} - 20 \text{ kt to } V_{NE}\) with—

(1) Critical weight;

(2) Critical center of gravity;

(3) Power required for level flight at \(V_{NE} - 10 \text{ kt or maximum continuous power} \) whichever is less;

(4) The landing gear retracted; and

(5) The rotorcraft trimmed at \(V_{NE} - 10 \text{ kt} \).

(d) Autorotation. Static longitudinal stability must be shown in autorotation at—

(1) Airspeeds from the minimum rate of descent airspeed – 10 kt to the minimum rate of descent airspeed + 10 kt, with—