conditions must be considered in sequence unless their occurrence is shown to be improbable.

VIII. Equipment, systems, and installation. The basic equipment and installation must comply with Subpart F of Part 29 through Amendment 29–14, with the following exceptions and additions:

(a) Flight and navigation instruments. (1) A magnetic gyro-stabilized direction indicator instead of the gyroscopic direction indicator required by § 29.1303(b); and

(b) Standby attitude indicator which meets the requirements of §§ 29.1303(g)(1) through (7), instead of a rate-of-turn indicator required by §29.1303(g). If standby batteries are provided, they may be charged from the aircraft electrical system if adequate isolation is incorporated. The system must be designed so that the standby batteries may not be used for engine starting.

(c) Miscellaneous requirements. (1) Instrument systems and other systems essential for IFR flight that could be adversely affected by icing must be provided with adequate ice protection whether or not the helicopter is certificated for operation in icing conditions.

(ii) Additional instruments, systems, or equipment may not be connected to an operating system for a second pilot unless provisions are made to ensure the continued normal functioning of the required instruments in the event of any malfunction of the additional systems, systems, or equipment which is not shown to be extremely improbable;

(iii) The equipment, systems, and installations must be designed so that one display of the information essential to the safety of flight which is provided by the instruments will remain available to a pilot, without additional crew-member action, after any single failure or combination of failures that is not shown to be extremely improbable; and

(iv) For single-pilot configurations, instruments which require a static source must be provided with a means of selecting an alternate source and that source must be calibrated.

(b) In determining compliance with the requirements of §29.1381(d)(2), the supply of electrical power to all systems necessary for flight under IFR must be included in the evaluation.

(c) Thunderstorm lights. In addition to the instrument lights required by §29.1381(a), thunderstorm lights which provide high intensity white flood lighting to the basic flight instruments must be provided. The thunderstorm lights must be installed to meet the requirements of §29.1381(b).

IX. Rotorcraft Flight Manual. A Rotorcraft Flight Manual or Rotorcraft Flight Supplement must be provided and must contain—

(a) Limitations. The approved IFR flight envelope, the IFR flight envelope of the helicopter, and the IFR precision approach gradient for which the helicopter is approved;

(b) Procedures. Required information for proper operation of IFR systems and the recommended procedures in the event of stability augmentation or electrical system failures; and

(c) Performance. If V_{YI} differs from V_{Y}, climb performance at V_{YI} and with maximum continuous power throughout the ranges of weight, altitude, and temperature for which approval is requested.

APPENDIX C TO PART 29—ICING CERTIFICATION

(a) Continuous maximum icing. The maximum continuous intensity of atmospheric icing conditions (continuous maximum icing) is defined by the variables of the cloud liquid water content, the mean effective diameter of the cloud droplets, the ambient air temperature, and the interrelationship of these three variables as shown in Figure 1 of this appendix. The limiting icing envelope in terms of altitude and temperature is given in Figure 2 of this appendix. The interrelationship of cloud liquid water content with drop diameter and altitude is determined from Figures 1 and 2. The cloud liquid water content for continuous maximum icing conditions of a horizontal extent, other than 17.4 nautical miles, is determined by the value of liquid water content of Figure 1, multiplied by the appropriate factor from Figure 3 of this appendix.

(b) Intermittent maximum icing. The intermittent maximum intensity of atmospheric icing conditions (intermittent maximum
icing) is defined by the variables of the cloud liquid water content, the mean effective diameter of the cloud droplets, the ambient air temperature, and the interrelationship of these three variables as shown in Figure 4 of this appendix. The limiting icing envelope in terms of altitude and temperature is given in Figure 5 of this appendix. The interrelationship of cloud liquid water content with drop diameter and altitude is determined from Figures 4 and 5. The cloud liquid water content for intermittent maximum icing conditions of a horizontal extent, other than 2.6 nautical miles, is determined by the value of cloud liquid water content of Figure 4 multiplied by the appropriate factor in Figure 6 of this appendix.
APPENDIX C

FIGURE 2

CONTINUOUS MAXIMUM (STRATIFORM CLOUDS) ATMOSPHERIC ICING CONDITIONS AMBIENT TEMPERATURE VS PRESSURE ALTITUDE

SOURCE OF DATA
NACA TN NO. 2500

PRESSURE ALTITUDE - 1000 FT.

AMBIENT TEMPERATURE - ""
APPENDIX C

FIGURE 3
APPENDIX C

FIGURE 4

1. Pressure altitude range, 4,000-22,000 ft.
2. Horizontal extent, standard distance of 2.6 Nautical Miles.

SOURCE OF DATA

NOTE: DASHED LINES INDICATE POSSIBLE EXTENT OF LIMITS

INTERMITTENT MAXIMUM (CUMULIFORM CLOUDS) ATMOSPHERIC ICING CONDITIONS

LIQUID WATER CONTENT VS MEAN EFFECTIVE DROP DIAMETER

MEAN EFFECTIVE DROP DIAMETER - MICRONS

LIQUID WATER CONTENT - GRAMS PER CUBIC METER
APPENDIX C

FIGURE 5

INTERMITTENT MAXIMUM (CUMULIFORM CLOUDS) ATMOSPHERIC ICING CONDITIONS
AMBIENT TEMPERATURE VS PRESSURE ALTITUDE

SOURCE OF DATA
NACA TN NO. 2569

NOTE:
DASHED LINES INDICATE POSSIBLE EXTENT OF LIMITS

AMBIENT TEMPERATURE - °F
PRESURE ALTITUDE - 1000 FEET