determined by a process of analysis, planning, and consultation among the DOE, affected State and local government jurisdictions, and affected Indian tribes; and (2) the requirements specified in §960.5-1(a)(2) can be met.

(b) Favorable conditions. (1) Ability of an affected area to absorb the project-related population changes without significant disruptions of community services and without significant impacts on housing supply and demand.

(2) Availability of an adequate labor force in the affected area.

(3) Projected net increases in employment and business sales, improved community services, and increased government revenues in the affected area.

(4) No projected substantial disruption of primary sectors of the economy of the affected area.

(c) Potentially adverse conditions. (1) Potential for significant repository-related impacts on community services, housing supply and demand, and the finances of State and local government agencies in the affected area.

(2) Lack of an adequate labor force in the affected area.

(3) Need for repository-related purchase or acquisition of water rights, if such rights could have significant adverse impacts on the present or future development of the affected area.

(4) Potential for major disruptions of primary sectors of the economy of the affected area.

(d) Disqualifying condition. A site shall be disqualified if repository construction, operation, or closure would significantly degrade the quality, or significantly reduce the quantity, of water from major sources of offsite supplies presently suitable for human consumption or crop irrigation and such impacts cannot be compensated for, or mitigated by, reasonable measures.

§ 960.5-2-7 Transportation.

(a) Qualifying condition. The site shall be located such that (1) the access routes constructed from existing local highways and railroads to the site (i) will not conflict irreconcilably with the previously designated use of any resource listed in §960.5-2-5(d) (2) and (3); (ii) can be designed and constructed using reasonably available technology; (iii) will not require transportation system components to meet performance standards more stringent than those specified in the applicable DOT and NRC regulations, nor require the development of new packaging containment technology; (iv) will allow transportation operations to be conducted without causing an unacceptable risk to the public or unacceptable environmental impacts, taking into account programmatic, technical, social, economic, and environmental factors; and (2) the requirements of §960.5-1(a)(2) can be met.

(b) Favorable conditions. (1) Availability of access routes from local existing highways and railroads to the site which have any of the following characteristics:

(i) Such routes are relatively short and economical to construct as compared to access routes for other comparable siting options.

(ii) Federal condemnation is not required to acquire rights-of-way for the access routes.

(iii) Such routes are relatively short and economical to construct as compared to access routes for other comparable siting options.

(iv) Such routes are relatively short and economical to construct as compared to access routes for other comparable siting options.

(v) Such routes are relatively short and economical to construct as compared to access routes for other comparable siting options.

(vi) Such routes are relatively short and economical to construct as compared to access routes for other comparable siting options.

(vii) Such routes are relatively short and economical to construct as compared to access routes for other comparable siting options.

(viii) Such routes are relatively short and economical to construct as compared to access routes for other comparable siting options.

(ix) Such routes are relatively short and economical to construct as compared to access routes for other comparable siting options.

(x) Such routes are relatively short and economical to construct as compared to access routes for other comparable siting options.

(xi) Such routes are relatively short and economical to construct as compared to access routes for other comparable siting options.

(xii) Such routes are relatively short and economical to construct as compared to access routes for other comparable siting options.

(xiii) Such routes are relatively short and economical to construct as compared to access routes for other comparable siting options.

(xiv) Such routes are relatively short and economical to construct as compared to access routes for other comparable siting options.

(xv) Such routes are relatively short and economical to construct as compared to access routes for other comparable siting options.

(xvi) Such routes are relatively short and economical to construct as compared to access routes for other comparable siting options.

(xvii) Such routes are relatively short and economical to construct as compared to access routes for other comparable siting options.

(xviii) Such routes are relatively short and economical to construct as compared to access routes for other comparable siting options.

(xix) Such routes are relatively short and economical to construct as compared to access routes for other comparable siting options.

(xx) Such routes are relatively short and economical to construct as compared to access routes for other comparable siting options.

(2) Proximity to local highways and railroads that provide access to regional highways and railroads and are adequate to serve the repository without significant upgrading or reconstruction.

(3) Proximity to regional highways, mainline railroads, or inland waterways that provide access to the national transportation system.

(4) Availability of a regional railroad system with a minimum number of interchange points at which train crew and equipment changes would be required.

(5) Total projected life-cycle cost and risk for transportation of all wastes designated for the repository site which are significantly lower than those for comparable siting options, considering locations of present and potential sources of waste, interim
storage facilities, and other repositories.
(6) Availability of regional and local carriers—truck, rail, and water—which have the capability and are willing to handle waste shipments to the repository.
(7) Absence of legal impediment with regard to compliance with Federal regulations for the transportation of waste in or through the affected State and adjoining States.
(8) Plans, procedures, and capabilities for response to radioactive waste transportation accidents in the affected State that are completed or being developed.
(9) A regional meteorological history indicating that significant transportation disruptions would not be routine seasonal occurrences.
(c) Potentially adverse conditions.
(1) Access routes to existing local highways and railroads that are expensive to construct relative to comparable siting options.
(2) Terrain between the site and existing local highways and railroads such that steep grades, sharp switchbacks, rivers, lakes, landslides, rock slides, or potential sources of hazard to incoming waste shipments will be encountered along access routes to the site.
(3) Existing local highways and railroads that could require significant reconstruction or upgrading to provide adequate routes to the regional and national transportation system.
(4) Any local condition that could cause the transportation-related costs, environmental impacts, or risk to public health and safety from waste transportation operations to be significantly greater than those projected for other comparable siting options.

Ease and Cost of Siting, Construction, Operation, and Closure
§ 960.5–2–8 Surface characteristics.
(a) Qualifying condition. The site shall be located such that, considering the surface characteristics and conditions of the site and surrounding area, including surface-water systems and the terrain, the requirements specified in §960.5–1(a)(3) can be met during repository siting, construction, operation, and closure.
(b) Favorable conditions.
(1) Generally flat terrain.
(2) Generally well-drained terrain.
(c) Potentially adverse condition. Surface characteristics that could lead to the flooding of surface or underground facilities by the occupancy and modification of flood plains, the failure of existing or planned man-made surface-water impoundments, or the failure of engineered components of the repository.

§ 960.5–2–9 Rock characteristics.
(a) Qualifying condition. The site shall be located such that (1) the thickness and lateral extent and the characteristics and composition of the host rock will be suitable for accommodation of the underground facility; (2) repository construction, operation, and closure will not cause undue hazard to personnel; and (3) the requirements specified in §960.5–1(a)(3) can be met.
(b) Favorable conditions.
(1) A host rock that is sufficiently thick and laterally extensive to allow significant flexibility in selecting the depth, configuration, and location of the underground facility.
(2) A host rock with characteristics that would require minimal or no artificial support for underground openings to ensure safe repository construction, operation, and closure.
(c) Potentially adverse conditions.
(1) A host rock that is suitable for repository construction, operation, and closure, but is so thin or laterally restricted that little flexibility is available for selecting the depth, configuration, and location of an underground facility.
(2) In situ characteristics and conditions that could require engineering measures beyond reasonably available technology in the construction of the shafts and underground facility.
(3) Geomechanical properties that could necessitate extensive maintenance of the underground openings during repository operation and closure.
(4) Potential for such phenomena as thermally induced fracturing, the hydration and dehydration of mineral components, or other physical, chemical, or radiation-related phenomena