Nuclear Regulatory Commission

§ 63.113

(e) An analysis of the performance of the structures, systems, and components to identify those that are important to safety. This analysis identifies and describes the controls that are relied on to limit or prevent potential event sequences or mitigate their consequences. This analysis also identifies measures taken to ensure the availability of safety systems. The analysis required in this paragraph must include, but not necessarily be limited to, consideration of—

(1) Means to limit concentration of radioactive material in air;
(2) Means to limit the time required to perform work in the vicinity of radioactive materials;
(3) Suitable shielding;
(4) Means to monitor and control the dispersal of radioactive contamination;
(5) Means to control access to high radiation areas or airborne radioactive areas;
(6) Means to prevent and control criticality;
(7) Radiation alarm system to warn of significant increases of radiation levels, concentrations of radioactive material in air, and increased radioactivity in effluents;
(8) Ability of structures, systems, and components to perform their intended safety functions, assuming the occurrence of event sequences;
(9) Explosion and fire detection systems and appropriate suppression systems;
(10) Means to control radioactive waste and radioactive effluents, and permit prompt termination of operations and evacuation of personnel during an emergency;
(11) Means to provide reliable and timely emergency power to instruments, utility service systems, and operating systems important to safety if there is a loss of primary electric power;
(12) Means to provide redundant systems necessary to maintain, with adequate capacity, the ability of utility services important to safety; and
(13) Means to inspect, test, and maintain structures, systems, and components important to safety, as necessary, to ensure their continued functioning and readiness.

(f) A description and discussion of the design, both surface and subsurface, of the geologic repository operations area, including—

(1) The relationship between design criteria and the requirements specified at §63.111(a) and (b); and
(2) The design bases and their relation to the design criteria.

POSTCLOSURE PERFORMANCE OBJECTIVES

§ 63.113 Performance objectives for the geologic repository after permanent closure.

(a) The geologic repository must include multiple barriers, consisting of both natural barriers and an engineered barrier system.

(b) The engineered barrier system must be designed so that, working in combination with natural barriers, radiological exposures to the reasonably maximally exposed individual are within the limits specified at §63.311 of subpart L of this part. Compliance with this paragraph must be demonstrated through a performance assessment that meets the requirements specified at §63.114 of this subpart, and §§63.303, 63.305, 63.312 and 63.342 of Subpart L of this part.

(c) The engineered barrier system must be designed so that, working in combination with natural barriers, releases of radionuclides into the accessible environment are within the limits specified at §63.331 of subpart L of this part. Compliance with this paragraph must be demonstrated through a performance assessment that meets the requirements specified at §63.114 of this subpart and §§63.303, 63.332 and 63.342 of subpart L of this part.

(d) The ability of the geologic repository to limit radiological exposures to the reasonably maximally exposed individual, in the event of human intrusion into the engineered barrier system, must be demonstrated through an analysis that meets the requirements at §§63.321 and 63.322 of subpart L of this part. Estimating radiological exposures to the reasonably maximally exposed individual requires a performance assessment that meets the requirements specified at §63.114 of this subpart and §§63.303, 63.305, 63.312 and 63.342 of subpart L of this part.
§ 63.114 Requirements for performance assessment.

(a) Any performance assessment used to demonstrate compliance with §63.113 for 10,000 years after disposal must:
 (1) Include data related to the geology, hydrology, and geochemistry (including disruptive processes and events) of the Yucca Mountain site, and the surrounding region to the extent necessary, and information on the design of the engineered barrier system used to define, for 10,000 years after disposal, parameters and conceptual models used in the assessment.
 (2) Account for uncertainties and variabilities in parameter values, for 10,000 years after disposal, and provide for the technical basis for parameter ranges, probability distributions, or bounding values used in the performance assessment.
 (3) Consider alternative conceptual models of features and processes, for 10,000 years after disposal, that are consistent with available data and current scientific understanding and evaluate the effects that alternative conceptual models have on the performance of the geologic repository.
 (4) Consider only features, events, and processes consistent with the limits on performance assessment specified at §63.342.
 (5) Provide the technical basis for either inclusion or exclusion of specific features, events, and processes in the performance assessment. Specific features, events, and processes must be evaluated in detail if the magnitude and time of the resulting radiological exposures to the reasonably maximally exposed individual, or radionuclide releases to the accessible environment, for 10,000 years after disposal, would be significantly changed by their omission.
 (6) Provide the technical basis for either inclusion or exclusion of degradation, deterioration, or alteration processes of engineered barriers in the performance assessment, including those processes that would adversely affect the performance of natural barriers. Degradation, deterioration, or alteration processes of engineered barriers must be evaluated in detail if the magnitude and time of the resulting radiological exposures to the reasonably maximally exposed individual, or radionuclide releases to the accessible environment, for 10,000 years after disposal, would be significantly changed by their omission.
 (7) Provide the technical basis for models used to represent the 10,000 years after disposal in the performance assessment, such as comparisons made with outputs of detailed process-level models and/or empirical observations (e.g., laboratory testing, field investigations, and natural analogs).

(b) The performance assessment methods used to satisfy the requirements of paragraph (a) of this section are considered sufficient for the performance assessment for the period of time after 10,000 years and through the period of geologic stability.

[74 FR 10828, Mar. 13, 2009]

§ 63.115 Requirements for multiple barriers.

Demonstration of compliance with §63.113(a) must:
 (a) Identify those design features of the engineered barrier system, and natural features of the geologic setting, that are considered barriers important to waste isolation.
 (b) Describe the capability of barriers, identified as important to waste isolation, to isolate waste, taking into account uncertainties in characterizing and modeling the behavior of the barriers.
 (c) Provide the technical basis for the description of the capability of barriers, identified as important to waste isolation, to isolate waste. The technical basis for each barrier’s capability shall be based on and consistent with the technical basis for the performance assessments used to demonstrate compliance with §63.113(b) and (c).

LAND OWNERSHIP AND CONTROL

§ 63.121 Requirements for ownership and control of interests in land.

(a) Ownership of land. (1) The geologic repository operations area must be located in and on lands that are either acquired lands under the jurisdiction