contain any nuclides listed in either Table 1 or 2, it is Class A.

(i) If the concentration does not exceed the value in Column 1, the waste is Class A.

(ii) If the concentration exceeds the value in Column 1, but does not exceed the value in Column 2, the waste is Class B.

(iii) If the concentration exceeds the value in Column 2, but does not exceed the value in Column 3, the waste is Class C.

(iv) If the concentration exceeds the value in Column 3, the waste is not generally acceptable for near-surface disposal.

(v) For wastes containing mixtures of the nuclides listed in Table 2, the total concentration shall be determined by the sum of fractions rule described in paragraph (a)(7) of this section.

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Concentration, curies per cubic meter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Col. 1</td>
</tr>
<tr>
<td>Total of all nuclides with less than 5 year half-life</td>
<td>700</td>
</tr>
<tr>
<td>H–3</td>
<td>40</td>
</tr>
<tr>
<td>Co–60</td>
<td>700</td>
</tr>
<tr>
<td>Ni–63</td>
<td>3.5</td>
</tr>
<tr>
<td>Ni–63 in activated metal</td>
<td>35</td>
</tr>
<tr>
<td>Sr–90</td>
<td>0.04</td>
</tr>
<tr>
<td>Cs–137</td>
<td>1</td>
</tr>
</tbody>
</table>

*There are no limits established for these radionuclides in Class B or C wastes. Practical considerations such as the effects of external radiation and internal heat generation on transportation, handling, and disposal will limit the concentrations for these wastes. These wastes shall be Class B unless the concentrations of other nuclides in Table 2 determine the waste to be Class C independent of these nuclides.

(5) **Classification determined by both long- and short-lived radionuclides.** If radioactive waste contains a mixture of radionuclides, some of which are listed in Table 1, and some of which are listed in Table 2, classification shall be determined as follows:

(i) If the concentration of a nuclide listed in Table 1 does not exceed 0.1 times the value listed in Table 1, the class shall be that determined by the concentration of nuclides listed in Table 2.

(ii) If the concentration of a nuclide listed in Table 1 exceeds 0.1 times the value listed in Table 1 but does not exceed the value in Table 1, the waste shall be Class C, provided the concentration of nuclides listed in Table 2 does not exceed the value shown in Column 3 of Table 2.

(6) **Classification of wastes with radionuclides other than those listed in Tables 1 and 2.** If radioactive waste does not contain any nuclides listed in either Table 1 or 2, it is Class A.

(7) **The sum of the fractions rule for mixtures of radionuclides.** For determining classification for waste that contains a mixture of radionuclides, it is necessary to determine the sum of fractions by dividing each nuclide’s concentration by the appropriate limit and adding the resulting values. The appropriate limits must all be taken from the same column of the same table. The sum of the fractions for the column must be less than 1.0 if the waste class is to be determined by that column. Example: A waste contains Sr-90 in a concentration of 50 Ci/m³ and Cs-137 in a concentration of 22 Ci/m³. Since the concentrations both exceed the values in Column 1, Table 2, they must be compared to Column 2 values. For Sr-90 fraction 50/150=0.33; for Cs-137 fraction, 22/44=0.5; the sum of the fractions=0.83. Since the sum is less than 1.0, the waste is Class B.

(8) **Determination of concentrations in wastes.** The concentration of a radionuclide may be determined by indirect methods such as use of scaling factors which relate the inferred concentration of one radionuclide to another that is measured, or radionuclide material accountability, if there is reasonable assurance that the indirect methods can be correlated with actual measurements. The concentration of a radionuclide may be averaged over the volume of the waste, or weight of the waste if the units are expressed as nanocuries per gram.

(2) Liquid waste must be solidified or packaged in sufficient absorbent material to absorb twice the volume of the liquid.

(3) Solid waste containing liquid shall contain as little free standing and noncorrosive liquid as is reasonably achievable, but in no case shall the liquid exceed 1% of the volume.

(4) Waste must not be readily capable of detonation or of explosive decomposition or reaction at normal pressures and temperatures, or of explosive reaction with water.

(5) Waste must not contain, or be capable of generating, quantities of toxic gases, vapors, or fumes harmful to persons transporting, handling, or disposing of the waste. This does not apply to radioactive gaseous waste packaged in accordance with paragraph (a)(7) of this section.

(6) Waste must not be pyrophoric. Pyrophoric materials contained in waste shall be treated, prepared, and packaged to be nonflammable.

(7) Waste in a gaseous form must be packaged at a pressure that does not exceed 1.5 atmospheres at 20 °C. Total activity must not exceed 100 curies per container.

(8) Waste containing hazardous, biological, pathogenic, or infectious material must be treated to reduce to the maximum extent practicable the potential hazard from the non-radio logical materials.

(b) The requirements in this section are intended to provide stability of the waste. Stability is intended to ensure that the waste does not structurally degrade and affect overall stability of the site through slumping, collapse, or other failure of the disposal unit and thereby lead to water infiltration. Stability is also a factor in limiting exposure to an inadvertent intruder, since it provides a recognizable and non-dispersible waste.

(1) Waste must have structural stability. A structurally stable waste form will generally maintain its physical dimensions and its form, under the expected disposal conditions such as weight of overburden and compaction equipment, the presence of moisture, and microbial activity, and internal factors such as radiation effects and chemical changes. Structural stability can be provided by the waste form itself, processing the waste to a stable form, or placing the waste in a disposal container or structure that provides stability after disposal.

(2) Notwithstanding the provisions in § 61.56(a) (2) and (3), liquid wastes, or wastes containing liquid, must be converted into a form that contains as little free standing and noncorrosive liquid as is reasonably achievable, but in no case shall the liquid exceed 1% of the volume of the waste when the waste is in a disposal container designed to ensure stability, or 0.5% of the volume of the waste for waste processed to a stable form.

(3) Void spaces within the waste and between the waste and its package must be reduced to the extent practicable.

§ 61.57 Labeling.

Each package of waste must be clearly labeled to identify whether it is Class A waste, Class B waste, or Class C waste, in accordance with § 61.55.

§ 61.58 Alternative requirements for waste classification and characteristics.

The Commission may, upon request or on its own initiative, authorize other provisions for the classification and characteristics of waste on a specific basis, if, after evaluation, of the specific characteristics of the waste, disposal site, and method of disposal, it finds reasonable assurance of compliance with the performance objectives in subpart C of this part.

§ 61.59 Institutional requirements.

(a) Land ownership. Disposal of radioactive waste received from other persons may be permitted only on land owned in fee by the Federal or a State government.

(b) Institutional control. The land owner or custodial agency shall carry out an institutional control program to physically control access to the disposal site following transfer of control of the disposal site from the disposal site operator. The institutional control program must also include, but not be limited to, carrying out an environmental monitoring program at the disposal site, periodic surveillance, minor