Federal Railroad Administration, DOT

APPENDIX B TO PART 238—TEST METHODS AND PERFORMANCE CRITERIA FOR THE FLAMMABILITY AND SMOKE EMISSION CHARACTERISTICS OF MATERIALS USED IN PASSENGER CARS AND LOCOMOTIVE CABS

This appendix contains the test methods and performance criteria for the flammability and smoke emission characteristics of materials used in passenger cars and locomotive cabs, in accordance with the requirements of §238.103.

(a) Incorporation by reference. Certain documents are incorporated by reference into this appendix with the approval of the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. You may inspect a copy of each document during normal business hours at the Federal Railroad Administration, Docket Clerk, 1200 New Jersey Avenue, SE., Washington, DC 20005 or at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. The documents incorporated by reference into this appendix and the sources from which you may obtain these documents are listed below:

(1) American Society for Testing and Materials (ASTM), 100 Barr Harbor Dr., West Conshohocken, PA 19428-2959.

(3) State of California, Department of Consumer Affairs, Bureau of Home Furnishings and Thermal Insulation, 3855 Orange Grove Avenue, North Highlands, CA 95660-5595.

(b) Definitions. As used in this appendix—

Average heat release rate (\(q_{180}\)) means, as defined in ASTM E 1354–99, the average heat release rate per unit area in the time period beginning at the time of ignition and ending 180 seconds later.

Critical radiant flux (C.R.F.) means, as defined in ASTM E 162–98, a factor derived from the rate of progress of the flame front (\(F_s\)) and the rate of heat liberation by the material under test (\(Q\)), such that \(I_c = F_s \times Q\).

Flame spread index (\(I_s\)) means, as defined in ASTM E 162–98, a factor derived from the rate of progress of the flame front (\(F_s\)) and the rate of heat liberation by the material under test (\(Q\)), such that \(I_s = F_s \times Q\).

Flaming dripping means periodic dripping of flaming material from the site of material burning or material installation.

Flaming running means continuous flaming material leaving the site of material burning or material installation.

Flame spread index (\(I_s\)) means, as defined in ASTM E 1354–99, the heat evolved from a specimen of unit surface area, that is irradiated by a heat flux of 2.5 watts/cm² for a specified period of time.

Specific extinction area (\(a_s\)) means, as defined in ASTM E 1354–99, specific extinction area for smoke.

Specific optical density (\(D_s\)) means, as defined in ASTM E 662–01, the optical density measured over unit path length within a chamber of unit volume, produced from a specimen of unit surface area, that is irradiated by a heat flux of 2.5 watts/cm² for a specified period of time.

Surface flammability means the rate at which flames will travel along surfaces.

(c) Required test methods and performance criteria. The materials used in locomotive cabs and passenger cars shall be tested according to the methods and meet the performance criteria set forth in the following table and notes:
Test Procedures and Performance Criteria for the Flammability and Smoke Emission
Characteristics of Materials Used in Passenger Cars and Locomotive Cabs

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>FUNCTION OF MATERIAL</th>
<th>TEST METHOD</th>
<th>PERFORMANCE CRITERIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cushions, Mattresses</td>
<td>Seat upholstery, mattress ticking and covers, curtains, drapes, wall coverings, and</td>
<td>14 CFR 25, Appendix F, Part I, (vertical test)</td>
<td>Flame time ≤ 10 seconds Burn length ≤ 6 inches</td>
</tr>
<tr>
<td></td>
<td>window shades 1, 2, 3, 4, 5, 6, 7, 8</td>
<td>ASTM E 662-01</td>
<td>D<sub>4</sub> ≤ 200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ASTM D 3675-98</td>
<td>Ig ≤ 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ASTM E 662-01</td>
<td>D<sub>5</sub> (1.5) ≤ 100 D<sub>4</sub> (4.0) ≤ 175</td>
</tr>
<tr>
<td>Fabrics</td>
<td>Seat and mattress frames, wall and ceiling panels, seat and toilet shrouds, tray and</td>
<td>ASTM E 162-98</td>
<td>Ig ≤ 35</td>
</tr>
<tr>
<td></td>
<td>other tables, partitions, shelves, opaque windscreens, end caps, roof housings, and</td>
<td>ASTM E 662-01</td>
<td>D<sub>5</sub> (1.5) ≤ 100 D<sub>4</sub> (4.0) ≤ 200</td>
</tr>
<tr>
<td></td>
<td>component boxes and covers 1, 2</td>
<td>ASTM D 3675-98</td>
<td>Ig ≤ 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ASTM E 662-01</td>
<td>D<sub>5</sub> (1.5) ≤ 100 D<sub>4</sub> (4.0) ≤ 175</td>
</tr>
<tr>
<td>Other Vehicle Components</td>
<td>Thermal and acoustic insulation 1, 2</td>
<td>ASTM E 162-98</td>
<td>Ig ≤ 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ASTM E 662-01</td>
<td>D<sub>4</sub> (4.0) ≤ 100</td>
</tr>
<tr>
<td></td>
<td>HVAC ducting 1, 2</td>
<td>ASTM E 162-98</td>
<td>Ig ≤ 35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ASTM E 662-01</td>
<td>D<sub>4</sub> (4.0) ≤ 200</td>
</tr>
<tr>
<td></td>
<td>Floor covering 1, 2</td>
<td>ASTM E 648-00</td>
<td>C.R.F. ≥ 5 kW/m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ASTM E 662-01</td>
<td>D<sub>5</sub> (1.5) ≤ 100 D<sub>4</sub> (4.0) ≤ 200</td>
</tr>
<tr>
<td></td>
<td>Light diffusers, windows and transparent plastic windscreens 1, 4</td>
<td>ASTM E 162-98</td>
<td>Ig ≤ 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ASTM E 662-01</td>
<td>D<sub>5</sub> (1.5) ≤ 100 D<sub>4</sub> (4.0) ≤ 200</td>
</tr>
<tr>
<td>Elastomers</td>
<td>Window gaskets, door nosings, inter-car diaphragms, roof mats, and seat springs</td>
<td>ASTM C 1166-00</td>
<td>Average flame propagation ≤ 4 inches</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ASTM E 662-01</td>
<td>D<sub>5</sub> (1.5) ≤ 100 D<sub>4</sub> (4.0) ≤ 200</td>
</tr>
<tr>
<td>Structural Components</td>
<td>Flooring 15, Other 17</td>
<td>ASTM E 119-00a</td>
<td>Pass</td>
</tr>
</tbody>
</table>

1Materials tested for surface flammability shall not exhibit any flaming running or dripping.

2The ASTM E 662-01 maximum test limits for smoke emission (specific optical density) shall be measured in either the flaming or

2The ASTM E 662-01 maximum test limits for smoke emission (specific optical density) shall be measured in either the flaming or
Federal Railroad Administration, DOT

Pt. 238, App. B

non-flaming mode, utilizing the mode which generates the most smoke.

3. Testing of a complete seat assembly (including cushions, fabric layers, upholstery) according to the pass/fail criteria of Cal TB 133, and testing of a complete mattress assembly (including foam and ticking) according to ASTM E 1590-01 using the smoke generation test procedure, or the appropriate mattress test procedure otherwise specified herein, provided the assembly component units remain unchanged or new (replacement) assembly components possess equivalent fire performance properties to the original components tested. A fire hazard analysis must also be conducted that considers the operating environment within which the seat or mattress assembly will be used in relation to the risk of vandalism, puncture, cutting, or other acts which may expose the individual components of the assemblies to an ignition source. Notes 5, 6, 7, and 8 apply.

4. Testing is performed without upholstery.

5. The surface flammability and smoke emission characteristics shall be demonstrated to be permanent after dynamic testing according to ASTM D 3574–95, Test I; (Dynamic Fatigue Test by the Roller Shear at Constant Force) or Test I, (Dynamic Fatigue Test by Constant Force Pounding) both using Procedure B, except that the test samples shall be a minimum of 6 inches (154 mm) by 18 inches (457 mm) by the thickness of the material in its end use configuration, or multiples thereof. If Test I, is used, the size of the indentor described in paragraph 96.2 shall be modified to accommodate the specified test specimen.

6. The surface flammability and smoke emission characteristics shall be demonstrated to be permanent by dry-cleaning; if appropriate, according to PFD-STD-31A Textile Test Method 5830.

7. The surface flammability and smoke emission characteristics shall be demonstrated to be permanent by dry-cleaning; if appropriate, according to ASTM D 2744-87.

8. Materials that cannot be washed or dry-cleaned shall be so labeled and shall meet the applicable performance criteria after being cleaned as recommended by the manufacturer.

9. Signage is not required to meet any flammability or smoke emission performance criteria specified in this Appendix.

10. Materials used to fabricate miscellaneous, discontinuous small parts (such as knobs, rollers, fasteners, clips, grommets, and small electrical parts) that will not contribute materially to fire growth in end use configuration are exempt from flammability and smoke emission performance requirements, provided that the surface area of any individual small part is less than 16 square inches (100 cm²) in end use configuration and an appropriate fire hazard analysis is conducted which addresses the location and quantity of the materials used, and the vulnerability of the materials to ignition and contribution to flame spread.

11. If the surface area of any individual small part is less than 16 square inches (100 cm²) in end use configuration, materials used to fabricate such a part may be tested in accordance with ASTM E 662-01 as an alternative to both (a) the ASTM E 162-98 flammability test procedure, or the appropriate flammability test procedure otherwise specified in the table, and (b) the ASTM E 662-01 smoke generation test procedure. Testing shall be at 50 kW/m² applied heat flux with a retainer frame. Materials tested in accordance with ASTM E 1354–99 shall meet the following performance criteria: average heat release rate ($q_{(w)}$) less than or equal to 100 kW/m² and average specific extinction area (es) less than or equal to 500 m²/kg over the same 180-second period.

12. Carpeting used as a wall or ceiling covering shall be tested according to ASTM E 162-98 and ASTM E 662-01 and meet the respective criteria of I, less than or equal to 35 and D, (1.5) less than or equal to 180 and D, (4.0) less than or equal to 200. Notes 1 and 2 apply.

13. Floor covering shall be tested with padding in accordance with ASTM E 648-00, if the padding is used in the actual installation.

14. For double window glazing, only the interior glazing is required to meet the requirements specified herein. (The exterior glazing is not required to meet these requirements.)

15. Penetrations (ducts, etc.) shall be designed against acting as passageways for fire and smoke and representative penetrations shall be included as part of test assemblies.

16. A structural flooring assembly separating the interior of a vehicle from its undercarriage shall meet the performance criteria during a nominal test period as determined by the railroad. The nominal test period must be twice the maximum expected time period under normal circumstances for a vehicle to stop completely and safely from its maximum operating speed, plus the time necessary to evacuate all the vehicle’s occupants to a safe area. The nominal test period must not be less than 15 minutes. Only one specimen need be tested. A proportional reduction may be made in the dimensions of the specimen provided it serves to truly test the ability of the structural flooring assembly to perform as a barrier against under-vehicle fires. The fire resistance period required shall be consistent with the safe evacuation of a full load of passengers from the vehicle under worst-case conditions.

17. Portions of the vehicle body which separate major ignition sources, energy sources, or sources of fuel-load from vehicle interiors, shall have sufficient fire endurance as determined by a fire hazard analysis acceptable to
the railroad which addresses the location and quantity of the materials used, as well as vulnerability of the materials to ignition, flame spread, and smoke generation. These provisions include equipment carrying portions of a vehicle's roof and the interior structure separating the levels of a bi-level car, but do not include a flooring assembly subject to Note 16. A railroad is not required to use the ASTM E 119–00a test method.

APPENDIX C TO PART 238—SUSPENSION SYSTEM SAFETY PERFORMANCE STANDARDS

This appendix contains the minimum suspension system safety performance standards for Tier II passenger equipment as required by §238.427. These requirements shall be the basis for evaluating suspension system safety performance until an industry standard acceptable to FRA is developed and approved under the procedures provided in §238.21.

(a) Passenger equipment suspension systems shall be designed to limit the lateral and vertical forces and lateral to vertical (L/V) ratios, for the time duration required to travel five feet at any operating speed or over any class of track, under all operating conditions as determined by the railroad, as follows:

(1) The maximum single wheel lateral to vertical force (L/V) ratio shall not exceed Nadal’s limit as follows:

$$\frac{\tan(\delta)}{1 + \mu \tan(\delta)}$$

where:

$\delta =$flange angle (deg),

$\mu =$coefficient of friction of 0.5.

(2) The net axle lateral force shall not exceed 0.5 times the static vertical axle load.

(3) The vertical wheel/rail force shall not be less than or equal to 10 percent of the static vertical wheel load.

(4) The sum of the vertical wheel loads on one side of any truck shall not be less than or equal to 20 percent of the static vertical axle load. This shall include the effect of a crosswind allowance as specified by the railroad for the intended service.

(5) The maximum truck side L/V ratio shall not exceed 0.6.

(6) When stopped on track with a uniform 6-inch superelevation, vertical wheel loads, at all wheels, shall not be less than or equal to 60 percent of the nominal vertical wheel load on level track.

For purposes of this appendix, wheel/rail force measurements shall be processed through a low pass filter having a cut-off frequency of 25 Hz.

APPENDIX D TO PART 238—REQUIREMENTS FOR EXTERNAL FUEL TANKS ON TIER I LOCOMOTIVES

The requirements contained in this appendix are intended to address the structural and puncture resistance properties of the locomotive fuel tank to reduce the risk of fuel spillage to acceptable levels under derailment and minor collision conditions.

(a) Structural strength—(1) Load case 1—minor derailment. The end plate of the fuel tank shall support a sudden loading of one half the weight of the car body at a vertical acceleration of 2g, without exceeding the ultimate strength of the material. The load is assumed to be supported on one rail, within an eight inch band (plus or minus) at a point nominally above the head of the rail, on tangent track. Consideration should be given in the design of the fuel tank to maximize the vertical clearance between the top of the rail and the bottom of the fuel tank.

(2) Load case 2—jackknifed locomotive. The fuel tank shall support transversely at the center a sudden loading equivalent to one half the weight of the locomotive at a vertical acceleration of 2g, without exceeding the ultimate strength of the material. The load is assumed to be supported on one rail, distributed between the longitudinal center line and the edge of the tank bottom, with a rail head surface of two inches.

(3) Load case 3—side impact. In a side impact collision by an 80,000 pound Gross Vehicle Weight tractor/trailer at the longitudinal center of the fuel tank, the fuel tank shall withstand, without exceeding the ultimate strength, a 200,000 pound load (2.5g) distributed over an area of six inches by forty-eight inches (half the bumper area) at a height of thirty inches above the rail (standard DOT bumper height).

(4) Load case 4—penetration resistance. The minimum thickness of the sides, bottom sheet and end plates of the fuel tank shall be equivalent to a ½-inch steel plate with a 25,000 pounds-per-square-inch yield strength (where the thickness varies inversely with the square root of yield strength). The lower one third of the end plates shall have the equivalent penetration resistance by the above method of a ¼-inch steel plate with a 25,000 pounds-per-square-inch yield strength. This may be accomplished by any combination of materials or other mechanical protection.

(b) Sideswipe. To minimize fuel tank damage during sideswipes (railroad vehicles and grade crossings), all drain plugs, clean-out ports, inspection covers, sight glasses, gauge openings, etc., must be flush with the tank surface or adequately protected to avoid catching foreign objects or breakage. All seams must be protected or flush to avoid catching foreign objects.